Hollow fiber technology is a powerful tool for the culture of difficult-to-grow cells. Cryptosporidium parvum has a multistage sexual and asexual life cycle that has proved difficult to culture by conventional in vitro culture methods. Here, we describe a method utilizing a hollow fiber bioreactor for the continuous in vitro growth of C. parvum that produces sexual and asexual stages. The method enables the evaluation of potential therapeutic compounds under conditions that mirror the dynamic conditions found in the gut facilitating preliminary pharmacokinetic and pharmacodynamic data to be obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9748-0_19 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute, Low-Carbon Conversion Science and Engineering Cente, 100 Haike Road, 201203, Shanghai, CHINA.
Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, CHINA.
Suboptimal spatial utilization and inefficient access to internal porosity preclude porous carbon cathodes from delivering high energy density in zinc-ion hybrid capacitors (ZIHCs). Inspired by the function of capillaries in biological systems, this study proposes a facile coordination-pyrolysis method to fabricate thin-walled hollow carbon nanofibers (CNFs) with optimized pore structure and surface functional groups for ZHICs. The capillary-like CNFs maximize the electrode/electrolyte interface area, facilitating the optimal utilization of energy storage sites.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Health Science and Technology, Aalborg University, Gistrup, 9260, Denmark.
Cryopreservation enhances the availability of "off-the-shelf" cell therapies. However, the choice between tissue culture polystyrene (TCP) and hollow fiber system (HFB) system for adipose-derived stem cell (ASC) production remains a critical decision, with implications for scalability, reproducibility, and the clinical efficacy. Therefore, the characteristics of ASCs expanded in TCP and HFB and cryopreserved were compared.
View Article and Find Full Text PDFChemosphere
December 2024
Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, B34, Semenyih, 43500, Selangor, Malaysia.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!