While it is well-known that the toxicity of mercury for plants is related to its bioavailability in the environment in which the plant lives, few studies have addressed Hg effects under controlled conditions of life-limiting available Hg concentrations. This study examines the effects of Hg on the holm oak (Quercus ilex L.) exposed to medium-high available Hg concentrations. Holm oak seeds were sown in a perlite substrate and grown in the presence of a nutrient solution containing 0, 5, 25, or 50 μM Hg. The variables determined as outcome measures were impacts on germination, growth, and nutrient accumulation along with Hg concentration in leaves, stems, and roots at different growth stages. Our findings suggest no overall detrimental effects of the metal on germination, nutrient accumulation, and plant growth, although root morphology was clearly modified. Mercury accumulation in the plant varied according to time, organ, Hg treatment dose, and plant growth stage. When comparing Hg build-up in the different organs, highest concentrations of the metal were detected in the roots, followed by the leaves and stems. The Hg accumulation pattern was positively correlated with time and Hg dose, whereas negative correlation was observed with growth stage. The impacts of all these factors on Hg accumulation were not additive pointing to interesting interaction effects that should be explored in future work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-06186-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!