Protein kinase N controls a lysosomal lipid switch to facilitate nutrient signalling via mTORC1.

Nat Cell Biol

Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.

Published: September 2019

Mechanistic target of rapamycin (mTOR) kinase functions in two multiprotein complexes: lysosomal mTOR complex 1 (mTORC1) and mTORC2 at the plasma membrane. mTORC1 modulates the cell response to growth factors and nutrients by increasing protein synthesis and cell growth, and repressing the autophagy-lysosomal pathway; however, dysfunction in mTORC1 is implicated in various diseases. mTORC1 activity is regulated by phosphoinositide lipids. Class I phosphatidylinositol-3-kinase (PI3K)-mediated production of phosphatidylinositol-3,4,5-trisphosphate at the plasma membrane stimulates mTORC1 signalling, while local synthesis of phosphatidylinositol-3,4-bisphosphate by starvation-induced recruitment of class II PI3K-β (PI3KC2-β) to lysosomes represses mTORC1 activity. How the localization and activity of PI3KC2-β are regulated by mitogens is unknown. We demonstrate that protein kinase N (PKN) facilitates mTORC1 signalling by repressing PI3KC2-β-mediated phosphatidylinositol-3,4-bisphosphate synthesis downstream of mTORC2. Active PKN2 phosphorylates PI3KC2-β to trigger PI3KC2-β complex formation with inhibitory 14-3-3 proteins. Conversely, loss of PKN2 or inactivation of its target phosphorylation site in PI3KC2-β represses nutrient signalling via mTORC1. These results uncover a mechanism that couples mTORC2-dependent activation of PKN2 to the regulation of mTORC1-mediated nutrient signalling by local lipid signals.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41556-019-0377-3DOI Listing

Publication Analysis

Top Keywords

nutrient signalling
12
mtorc1
9
protein kinase
8
signalling mtorc1
8
plasma membrane
8
mtorc1 activity
8
mtorc1 signalling
8
signalling local
8
signalling
5
pi3kc2-β
5

Similar Publications

Chronic Obstructive Pulmonary Disease (COPD) is a poorly reversible respiratory disorder distinguished by dyspnea, cough, expectoration and exacerbations due to abnormality of airways or emphysema. In this review, we consider the therapeutic potential of targeting Mammalian target of Rapamycin (mTOR) for treating COPD. The mTOR is a highly conserved serine-threonine protein kinase that integrates signals from growth factors and nutrients to control protein synthesis, lipid biogenesis and metabolism.

View Article and Find Full Text PDF

Record-setting cyanobacterial bloom in the largest freshwater lake in northern China caused by joint effects of hydrological variations and nutrient enrichment.

Environ Res

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Cyanobacterial blooms represent a significant environmental issue posing widespread threats to global aquatic ecological health. Climate and nutrient enrichment were the most studied factors modulating cyanobacterial blooms in eutrophic lakes. However, in many floodplain lakes, the importance of hydrological variation in driving and predicting cyanobacterial blooms is often overlooked and largely underestimated, which has hampered the effectiveness of lake management.

View Article and Find Full Text PDF

Arsenic toxicity in Antarctic krill oil and its impact on human intestinal cells.

Ecotoxicol Environ Saf

January 2025

East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China. Electronic address:

Arsenic is a pervasive environmental pollutant that can bioaccumulate in Antarctic krill through the food chain, posing potential risks to human health. This study investigates the toxic effects of arsenic in Antarctic krill oil (AKO) on Caco-2 cells, focusing on oxidative stress and apoptosis induction. AKO is nutrient-rich and contains various arsenic species, including arsenite (As³⁺), arsenate (As⁵⁺), dimethyl arsinic acid (DMA), and arsenobetaine (AsB), each exhibiting different toxic potencies.

View Article and Find Full Text PDF

The Arabidopsis root apical meristem is an excellent model for studying plant organ growth that involves a coordinated process of cell division, elongation, and differentiation, while each tissue type develops on its own schedule. Among these tissues, the protophloem is particularly important, differentiating early to supply nutrients and signalling molecules to the growing root tip. The OCTOPUS (OPS) protein and its homolog OPS-LIKE 2 (OPL2) are essential for proper root protophloem differentiation and, likely through this role, indirectly promote root growth.

View Article and Find Full Text PDF

Tumor-induced metabolic immunosuppression: Mechanisms and therapeutic targets.

Cell Rep

January 2025

Université Côte d'Azur, INSERM, C3M, Nice, France; Équipe labellisée LIGUE Contre le Cancer, Nice, France. Electronic address:

Metabolic reprogramming in both immune and cancer cells plays a crucial role in the antitumor immune response. Recent studies indicate that cancer metabolism not only sustains carcinogenesis and survival via altered signaling but also modulates immune cell function. Metabolic crosstalk within the tumor microenvironment results in nutrient competition and acidosis, thereby hindering immune cell functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!