Strongly interacting bosons display a rich variety of quantum phases, the study of which has so far been focused in the dilute regime, at a fixed number of particles. Here we demonstrate the formation of a dense Bose-Einstein condensate in a long-lived dark spin state of 2D dipolar excitons. A dark condensate of weakly interacting excitons is very fragile, being unstable against a coherent coupling of dark and bright spin states. Remarkably, we find that strong dipole-dipole interactions stabilize the dark condensate. As a result, the dark phase persists up to densities high enough for a dark quantum liquid to form. The striking experimental observation of a step-like dependence of the exciton density on the pump power is reproduced quantitatively by a model describing the nonequilibrium dynamics of driven coupled dark and bright condensates. This unique behavior marks a dynamical condensation to dark states with lifetimes as long as a millisecond, followed by a brightening transition at high densities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744851PMC
http://dx.doi.org/10.1073/pnas.1903374116DOI Listing

Publication Analysis

Top Keywords

dark condensate
12
dark
9
dipolar excitons
8
dark bright
8
dynamical formation
4
formation correlated
4
correlated dark
4
condensate
4
condensate dipolar
4
excitons interacting
4

Similar Publications

Mapping Dynamic Protein Clustering with AIEgen-Active Chemigenetic Probe.

Angew Chem Int Ed Engl

January 2025

East China University of Science and Technology, Insitute of Fine Chemicals, Meilong Road 130, Shanghai, China, 200237, Shanghai, CHINA.

Protein clustering/disassembling is a fundamental process in biomolecular condensates, playing crucial roles in cell fate decision and cellular homeostasis. However, the inherent features of protein clustering, especially for its reversible behavior and subtle microenvironment variation, present significant hurdles in probe chemistry for tracking protein clustering dynamics. Herein, we report a bilateral-tailored chemigenetic probe, in which an "amphiphilic" AIEgen QMSO3Cl is covalently conjugated to a protein tag that is genetically fused to protein-of-interest (POI).

View Article and Find Full Text PDF

Accumulation of autophagosomes in aging human photoreceptor cell synapses.

Exp Eye Res

January 2025

Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Electronic address:

Autophagy is common in the aging retinal pigment epithelium (RPE). A dysfunctional autophagy in aged RPE is implicated in the pathogenesis of age-related macular degeneration. Aging human retina accompanies degenerative changes in photoreceptor mitochondria.

View Article and Find Full Text PDF

Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods.

ACS Nano

January 2025

Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.

Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.

View Article and Find Full Text PDF

The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.

View Article and Find Full Text PDF

A feasible approach to chromophores removal and color reduction in industrial lignin via deep eutectic solvent/isopropanol treatment.

Int J Biol Macromol

December 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.

The dark coloration of industrial lignin significantly limits its potential for applications in high-value products. This work reported a practical strategy for lignin color reduction through the synergistic treatment of acidic deep eutectic solvent and isopropanol (DES-IPA). The results showed that the DES-IPA treatment could effectively remove the p-coumarate units and methoxy groups in lignin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!