Copper is essential for life, and beyond its well-established ability to serve as a tightly bound, redox-active active site cofactor for enzyme function, emerging data suggest that cellular copper also exists in labile pools, defined as loosely bound to low-molecular-weight ligands, which can regulate diverse transition metal signaling processes spanning neural communication and olfaction, lipolysis, rest-activity cycles, and kinase pathways critical for oncogenic signaling. To help decipher this growing biology, we report a first-generation ratiometric fluorescence resonance energy transfer (FRET) copper probe, FCP-1, for activity-based sensing of labile Cu(I) pools in live cells. FCP-1 links fluorescein and rhodamine dyes through a Tris[(2-pyridyl)methyl]amine bridge. Bioinspired Cu(I)-induced oxidative cleavage decreases FRET between fluorescein donor and rhodamine acceptor. FCP-1 responds to Cu(I) with high metal selectivity and oxidation-state specificity and facilitates ratiometric measurements that minimize potential interferences arising from variations in sample thickness, dye concentration, and light intensity. FCP-1 enables imaging of dynamic changes in labile Cu(I) pools in live cells in response to copper supplementation/depletion, differential expression of the copper importer CTR1, and redox stress induced by manipulating intracellular glutathione levels and reduced/oxidized glutathione (GSH/GSSG) ratios. FCP-1 imaging reveals a labile Cu(I) deficiency induced by oncogene-driven cellular transformation that promotes fluctuations in glutathione metabolism, where lower GSH/GSSG ratios decrease labile Cu(I) availability without affecting total copper levels. By connecting copper dysregulation and glutathione stress in cancer, this work provides a valuable starting point to study broader cross-talk between metal and redox pathways in health and disease with activity-based probes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744846 | PMC |
http://dx.doi.org/10.1073/pnas.1904610116 | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Molecular imaging with analyte-responsive probes offers a powerful chemical approach to studying biological processes. Many reagents for bioimaging employ a fluorescence readout, but the relatively broad emission bands of this modality and the need to alter the chemical structure of the fluorophore for different signal colors can potentially limit multiplex imaging. Here, we report a generalizable approach to multiplex analyte imaging by leveraging the comparably narrow spectral signatures of stimulated Raman scattering (SRS) in activity-based sensing (ABS) mode.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
To address the issues of plume formation and heavy metal ion release during deep-sea mining operations, this study employed multi-sourced mineral composite roasting materials (MMCCM) of varying sizes. An in-situ capping technique was applied within a simulated system to immobilize heavy metals in contaminated sediments. The results demonstrated that capping with MMCCM of different sizes significantly suppressed the upward migration of Cu, Co, and Ni from sediments into the overlying seawater following disturbance.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
The periodic anti-seasonal inundation of the Three Gorges Reservoir (TGR) leads to changes in the molecular composition of dissolved organic matter (DOM) in riparian soils, further impacting the geochemical processes and ecological risk of heavy metals. However, the intrinsic driving mechanisms of DOM influencing the cadmium (Cd), a major pollutant in riparian soils in TGR, at the molecular level remain unclear. In this study, the DOM molecular composition, labile Cd in riparian soils and the key driving mechanism before and after flooding were explored using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the diffusive gradients in thin films (DGT) and partial least squares path modeling (PLS-PM).
View Article and Find Full Text PDFAdv Mater
October 2024
Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550025, China.
Ferroptosis in neurons is considered one of the key factors that induces Parkinson's disease (PD), which is caused by excessive iron accumulation in the intracellular labile iron pool (LIP). The iron ions released from the LIP lead to the aberrant generation of reactive oxygen species (ROS) to trigger ferroptosis and exacerbate PD progression. Herein, a pioneering design of multifunctional nanoregulator deferoxamine (DFO)-integrated nanosheets (BDPR NSs) is presented that target the LIP to restrict ferroptosis and protect against PD.
View Article and Find Full Text PDFEnviron Sci Technol
September 2024
School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.
Most studies on Cu toxicity relied on indirect physicochemical parameters to predict Cu toxicity resulting from adverse impacts. This study presents a systematic and intuitive picture of Cu toxicity induced by exogenous acidification in phytoplankton . We first showed that acidification reduced the algal resistance to environmental Cu stress with a decreased growth rate and increased Cu bioaccumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!