AI Article Synopsis

  • The study investigates the role of the dorsolateral bed nucleus of the stria terminalis (dlBNST) in the mesolimbic dopaminergic system's dysfunction during chronic pain in rats.
  • Researchers found increased spontaneous inhibitory postsynaptic currents (sIPSCs) in dlBNST neurons projecting to the ventral tegmental area (VTA) four weeks after inducing neuropathic pain.
  • The study highlights that elevated corticotropin-releasing factor (CRF) signaling in the dlBNST contributes to this increased inhibition, suggesting a mechanistic link between chronic pain and depression through the suppression of the dopaminergic system.

Article Abstract

Although dysfunction of the mesolimbic dopaminergic system has been implicated in chronic pain, the underlying mechanisms remain to be elucidated. We hypothesized that increased inhibitory inputs to the neuronal pathway from the dorsolateral bed nucleus of the stria terminalis (dlBNST) to the ventral tegmental area (VTA) during chronic pain may induce tonic suppression of the mesolimbic dopaminergic system. To test this hypothesis, male Sprague Dawley rats were subjected to spinal nerve ligation to induce neuropathic pain and then spontaneous IPSCs (sIPSCs) were measured in this neuronal pathway. Whole-cell patch-clamp electrophysiology of brain slices containing the dlBNST revealed that the frequency of sIPSCs significantly increased in VTA-projecting dlBNST neurons 4 weeks after surgery. Next, the role of corticotropin-releasing factor (CRF) signaling within the dlBNST in the increased sIPSCs was examined. CRF increased the frequency of sIPSCs in VTA-projecting dlBNST neurons in sham-operated controls, but not in chronic pain rats. By contrast, NBI27914, a CRF type 1 receptor antagonist, decreased the frequency of sIPSCs in VTA-projecting dlBNST neurons in the chronic pain rats, but not in the control animals. In addition, histological analyses revealed the increased expression of CRF mRNA in the dlBNST. Finally, bilateral injections of NBI27914 into the dlBNST of chronic pain rats activated mesolimbic dopaminergic neurons and induced conditioned place preference. Together, these results suggest that the mesolimbic dopaminergic system is tonically suppressed during chronic pain by enhanced CRF signaling within the dlBNST via increased inhibitory inputs to VTA-projecting dlBNST neurons. The comorbidity of chronic pain and depression has long been recognized. Although dysfunction of the mesolimbic dopaminergic system has been implicated in both chronic pain and depression, the underlying mechanisms remain to be elucidated. Here, we show that the inhibitory inputs to the neuronal pathway from the dorsolateral bed nucleus of the stria terminalis (dlBNST) to the ventral tegmental area increase during chronic pain. This neuroplastic change is mediated by enhanced corticotropin-releasing factor signaling within the dlBNST that leads to tonic suppression of the mesolimbic dopaminergic system, which may be involved in the depressive mood and anhedonia under the chronic pain condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794933PMC
http://dx.doi.org/10.1523/JNEUROSCI.3047-18.2019DOI Listing

Publication Analysis

Top Keywords

chronic pain
44
mesolimbic dopaminergic
28
dopaminergic system
24
vta-projecting dlbnst
16
dlbnst neurons
16
tonic suppression
12
suppression mesolimbic
12
corticotropin-releasing factor
12
bed nucleus
12
nucleus stria
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!