A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetic Driver of Antibacterial Drugs against and Implications for Clinical Dosing. | LitMetric

Kinetic Driver of Antibacterial Drugs against and Implications for Clinical Dosing.

Antimicrob Agents Chemother

Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Published: November 2019

Antibacterial drugs are an important component of malaria therapy. We studied the interactions of clindamycin, tetracycline, chloramphenicol, and ciprofloxacin against under static and dynamic conditions. In microtiter plate assays (static conditions), and as expected, parasites displayed the delayed death response characteristic for apicoplast-targeting drugs. However, rescue by isopentenyl pyrophosphate was variable, ranging from 2,700-fold for clindamycin to just 1.7-fold for ciprofloxacin, suggesting that ciprofloxacin has targets other than the apicoplast. We also examined the pharmacokinetic-pharmacodynamic relationships of these antibacterials in an glass hollow-fiber system that exposes parasites to dynamically changing drug concentrations. The same total dose and area under the concentration-time curve (AUC) of the drug was deployed either as a single short-lived high peak (bolus) or as a constant low concentration (infusion). All four antibacterials were unambiguously time-driven against malaria parasites: infusions had twice the efficacy of bolus regimens, for the same AUC. The time-dependent efficacy of ciprofloxacin against malaria is in contrast to its concentration-driven action against bacteria. simulations of clinical dosing regimens and resulting pharmacokinetics revealed that current regimens do not maximize time above the MICs of these drugs. Our findings suggest that simple and rational changes to dosing may improve the efficacy of antibacterials against falciparum malaria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811425PMC
http://dx.doi.org/10.1128/AAC.00416-19DOI Listing

Publication Analysis

Top Keywords

antibacterial drugs
8
clinical dosing
8
kinetic driver
4
driver antibacterial
4
drugs
4
drugs implications
4
implications clinical
4
dosing antibacterial
4
drugs component
4
malaria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!