Algae biomass comprises variety of biochemicals components such as carbohydrates, lipids and protein, which make them a feasible feedstock for biofuel production. However, high production cost mainly due to algae cultivation remains the main challenge in commercializing algae biofuels. Hence, extraction of other high value-added bioproducts from algae biomass is necessary to enhance the economic feasibility of algae biofuel production. This paper is aims to deliberate the recent developments of conventional technologies for algae biofuels production, such as biochemical and chemical conversion pathways, and extraction of a variety of bioproducts from algae biomass for various potential applications. Besides, life cycle evaluation studies on microalgae biorefinery are presented, focusing on case studies for various cultivation techniques, culture medium, harvesting, and dewatering techniques along with biofuel and bioenergy production pathways. Overall, the algae biorefinery provides new opportunities for valorisation of algae biomass for multiple products synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2019.121964 | DOI Listing |
Toxins (Basel)
January 2025
Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.
This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.
View Article and Find Full Text PDFDis Aquat Organ
January 2025
Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-550 Szczecin, Poland.
The 2022 Oder River disaster was one of the most significant harmful events in recent European river history, with an estimated 60% reduction in fish biomass in the lower section of the river. While the prevailing hypothesis attributes associated fish kills to toxins from golden algae Prymnesium parvum, our histopathological study on the gills of 2 common cyprinid fish species, namely vimba bream Vimba vimba (L.) and roach Rutilus rutilus (L.
View Article and Find Full Text PDFRecent Pat Biotechnol
January 2025
Department of Zoology, University of Education, Bank Road Campus, Lahore, Pakistan.
The marine environment is one of the major biomass producers of algae and seaweed; it is rich in functional ingredients or active metabolites with valuable nutritional health effects. Algal metabolites derived from the cultivation of both microalgae and macroalgae may positively impact human health, offering physiological, pharmaceutical and nutritional benefits. Microalgae have been widely used as novel sources of bioactive substances.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Post Box No. 6, Palampur, 176 061, HP, India.
Background: The rising costs of synthetic fertilizers highlight the need for eco-friendly alternatives to enhance essential oil production in aromatic plants. This study evaluated the effects of red algae seaweed extract [Solieria chordalis (C. Agardh) J.
View Article and Find Full Text PDFSci Rep
January 2025
School of Geographic Science, Changchun Normal University, Changchun, 130102, China.
Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!