In 2015-2016, in the Americas, and especially in northeast Brazil, a significant number of cases of microcephaly and other congenital brain abnormalities were linked with an outbreak of Zika virus (ZIKV) infection in pregnant women. While maternal symptoms of ZIKV are generally mild and self-limiting, clinical presentation in fetuses and newborns infected is extensive and includes microcephaly, decreased cortical development, atrophy and hypoplasia of the cerebellum and cerebellar vermis, arthrogryposis, and polyhydramnios. The term congenital ZIKV syndrome (CZS) was introduced to describe the range of findings associated with maternal-fetal ZIKV transmission. ZIKV is primarily transmitted by mosquitoes, however non-vector-dependent routes are also possible. Mechanisms of maternal-fetal transmission remain unknown, and the trans-placental route has been extensively studied in animal models and in human samples. The aim of this review was to summarize recent studies that helped to elucidate the mechanism of CZS in animal models and observational studies. There are still challenges in the diagnosis and prevention of CZS in humans, due to the large gap that remains in translating ZIKV research to clinical practice. Translational research linking governments, local health workers, scientists and industry is fundamental to improve care for mothers and children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735503PMC
http://dx.doi.org/10.1080/21505594.2019.1656503DOI Listing

Publication Analysis

Top Keywords

animal models
8
zikv
6
host viral
4
viral mechanisms
4
mechanisms congenital
4
congenital zika
4
zika syndrome
4
syndrome 2015-2016
4
2015-2016 americas
4
americas northeast
4

Similar Publications

The involvement of Toll-like receptor 2 (TLR2) in leptospirosis is poorly understood. Our systematic review examined its role across in-vitro, in-vivo, ex-vivo, and human studies. Original articles published in English up to January 2024, exploring the role of TLR2 during leptospirosis, were selected from databases including PubMed, Web of Science, Scopus, Trip, and Google Scholar.

View Article and Find Full Text PDF

Food allergies are a global health problem that continues to grow annually, with a prevalence of more than 10%. Shrimp allergy is the most common and life-threatening allergy. There is no cure for food allergies, but shrimp allergen extract (SAE) offers promise as a treatment through allergen-specific immunotherapy (AIT).

View Article and Find Full Text PDF

Huddling behaviour is present in many animal species. This behaviour involves maintaining close physical contact with conspecifics to minimise heat loss and, in general, reduce energy expenditure. Additionally, this behaviour also facilitates complex social interactions within a population.

View Article and Find Full Text PDF

This study aimed to explore the construction of experimental animal models replicating cartilage defects across diverse load-bearing sites, compare self-repair conditions, and examine the role of mechanical stimulation in cartilage self-repair. Experimental animal models were established in rabbits to simulate full-thickness cartilage defects without penetrating the subchondral bone, at various load-bearing sites, including the posterior femoral condyle, anterior femoral condyle and femoral trochlear of knee joint, and the humerus of the shoulder joint. The successful exposure and construction of cartilage defects at the anterior femoral condyle, femoral trochlear, and posterior femoral condyle through the medial extension of surgical incision.

View Article and Find Full Text PDF

Introduction: Tree bacterial diseases are a threat in forestry due to their increasing incidence and severity. Understanding tree defence mechanisms requires evaluating metabolic changes arising during infection. Metabolite extraction affects the chemical diversity of the samples and, therefore, the biological relevance of the data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!