Classic homocystinuria (HCU) is an inherited disorder characterized by elevated homocysteine (Hcy) in plasma and tissues resulting from cystathionine β-synthase (CBS) deficiency. There is no cure, and patients are predominantly managed by methionine-restricted diet (MRD) to limit the production of Hcy. In this study, we used the I278T mouse model of HCU to evaluate the long-term impact of a novel enzyme replacement therapy [truncated human CBS C15S mutant modified with linear 20-kDa -hydroxysuccinimide ester polyethylene glycol (OT-58)] on clinical end points relevant to human patients with HCU. In addition, we compared its efficacy on a background of either MRD or normal methionine intake [regular diet (REG)] to that of MRD alone. We found that, compared with untreated I278T mice, OT-58 treatment of I278T mice fed with the REG diet resulted in a 90% decrease in plasma Hcy concentrations and correction of learning/cognition, endothelial dysfunction, hemostasis, bone mineralization, and body composition. On background of the MRD, OT-58 performed equally well with plasma Hcy entirely normalized. The MRD alone decreased plasma Hcy by 67% and corrected the HCU phenotype in I278T mice. However, the MRD increased anxiety and reduced bone mineral content in both I278T mice and wild-type controls. This study shows that OT-58 is a highly efficacious novel treatment for HCU on the background of either normal or restricted methionine intake.-Majtan, T., Park, I., Cox, A., Branchford, B. R., di Paola, J., Bublil, E. M., Kraus, J. P. Behavior, body composition, and vascular phenotype of homocystinuric mice on methionine-restricted diet or enzyme replacement therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902697PMC
http://dx.doi.org/10.1096/fj.201901203RDOI Listing

Publication Analysis

Top Keywords

i278t mice
16
body composition
12
methionine-restricted diet
12
enzyme replacement
12
replacement therapy
12
plasma hcy
12
behavior body
8
composition vascular
8
vascular phenotype
8
phenotype homocystinuric
8

Similar Publications

Article Synopsis
  • Homocystinuria (HCU) is caused by a deficiency in the enzyme cystathionine beta-synthase (CBS), leading to high levels of homocysteine in the body; it can be managed through a special diet and vitamin B supplementation, but there is currently no cure.
  • Recent research shows that enzyme replacement therapy (ERT) using human CBS can significantly lower homocysteine levels in mice, though it doesn't fully normalize them, prompting further investigation into how ERT works.
  • The study found that reducing homocysteine levels enhances CBS function, and using biological reductants like N-acetylcysteine can improve the effectiveness of CBS-based ERT, offering new ways to tackle H
View Article and Find Full Text PDF

Deciphering pathophysiological mechanisms underlying cystathionine beta-synthase-deficient homocystinuria using targeted metabolomics, liver proteomics, sphingolipidomics and analysis of mitochondrial function.

Redox Biol

July 2024

Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic. Electronic address:

Article Synopsis
  • Cystathionine β-synthase (CBS)-deficient homocystinuria (HCU) is a genetic disorder affecting sulfur amino acid metabolism, leading to various health complications and underscoring the need for better understanding of its biological processes.
  • In a study involving a transgenic mouse model (I278T), researchers found significant metabolic imbalances, altered liver proteome, and changes in sphingolipid metabolism, although mitochondrial function appeared normal.
  • A methionine-restricted diet (MRD) was shown to improve metabolic balance and reduce liver proteome disruptions in I278T mice, suggesting potential therapeutic benefits for HCU.
View Article and Find Full Text PDF

Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions.

View Article and Find Full Text PDF

Cystathionine β-synthase (CBS) deficiency is a recessive inborn error of sulfur metabolism characterized by elevated blood levels of total homocysteine (tHcy). Patients diagnosed with CBS deficiency are currently treated by a combination of vitamin supplementation and restriction of foods containing the homocysteine precursor methionine, but the effectiveness of this therapy is limited due to poor compliance. A mouse model for CBS deficiency (Tg-I278T Cbs ) was used to evaluate a potential gene therapy approach to treat CBS deficiency utilizing an AAVrh.

View Article and Find Full Text PDF

Cystathionine beta-synthase (CBS) is a key enzyme of the trans-sulfuration pathway that converts homocysteine to cystathionine. Loss of CBS activity due to mutation results in CBS deficiency, an inborn error of metabolism characterized by extreme elevation of plasma total homocysteine (tHcy). C57BL6 mice containing either a homozygous null mutation in the cystathionine β-synthase (Cbs ) gene or an inactive human CBS protein (Tg-G307S Cbs ) are born in mendelian numbers, but the vast majority die between 18 and 21 days of age due to liver failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!