Unlabelled: In the healthy human brain, the protein tau serves the essential function of stabilizing microtubules. However, in a diseased state, tau becomes destabilized and aggregates into a pathogenic form that ultimately creates one of the two major hallmarks of Alzheimer’s disease (AD), tau tangles. Multiple neurodegenerative diseases, termed tauopathies, such as Pick’s disease, and progressive supranuclear palsy, are also linked to mutations in tau. While AD does include a second hallmark in the form of amyloid beta (Aβ) plaques, to date all therapeutics aimed at these hallmark features have failed. The nonsteroidal anti-inflammatory drug tolfenamic acid (TA) has been shown to reduce the levels of multiple neurodegenerative endpoints viz amyloid precursor protein (APP), Aβ, tau, phosphorylated tau (p-tau) and improve cognitive function, in various murine models, via a new mechanism that targets specificity protein 1 (). Sp1 is a zinc-finger transcription factor essential for the regulation of tau and CDK5 genes (among others). The impact of TA on these neurodegenerative endpoints occurred in animal models and systems in which both the tau and the APP genes were present. The experimental model utilized in this paper tested whether the same beneficial outcomes of TA can take place after the removal of endogenous murine tau. We found that the impact of TA, both molecular and behavioral, was no longer significant in the absence of the tau gene. This ability of TA occurred independently of its action on anti-inflammatory targets. Therefore, these findings suggest the essentiality of tau for the novel mechanism of action of TA.

Impact Statement: The number of people suffering from Alzheimer’s disease (AD) is expected to increase exponentially in the coming decades. It is estimated to cost the economy about $200 billion annually. With the failure of standard therapeutic approaches, there is a need to develop new drugs in order to avoid an “epidemic crisis” in the future. We have discovered that tolfenamic acid (TA) lowers the levels of proteins associated with AD, by targeting common transcriptional mechanisms that regulate genes involved in common pathogenic pathways. Here, we investigated whether TA had effects on both the amyloid and tau pathways, or whether it selectively targets one of these pathways which impacted the other. Behavioral and molecular studies revealed that TA loses its AD therapeutic potential when tau gene is removed. This ability of TA occurred independently of its action on anti-inflammatory targets. These findings suggest that tau is essential for the new action of TA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775567PMC
http://dx.doi.org/10.1177/1535370219871249DOI Listing

Publication Analysis

Top Keywords

tau
15
tolfenamic acid
12
alzheimer’s disease
8
multiple neurodegenerative
8
neurodegenerative endpoints
8
tau gene
8
ability occurred
8
occurred independently
8
independently action
8
action anti-inflammatory
8

Similar Publications

Progressive supranuclear palsy: an updated approach on diagnosis, treatment, risk factors and outlook in Mexico.

Gac Med Mex

January 2025

Laboratorio de Reprogramación Celular y Enfermedades Crónico-Degenerativas, Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Progressive supranuclear palsy (PSP) is a rare, atypical parkinsonism, characterized by the presence of intracerebral tau protein aggregates and determined by a wide spectrum of clinical features. The definitive diagnosis is postmortem and is identified through the presence of neuronal death, gliosis, and aggregates of the tau protein presented in the form of neurofibrillary tangles (MNF) with a globose appearance in regions such as the subthalamic nucleus, the substantia nigra, and the globus pallidus The findings in ancillary imaging studies, as well as fluids biomarkers, are not sufficient to support diagnosis of PSP but are used to rule out similar pathologies because there are still no specific or validated biomarkers for this disease. The current treatment of PSP is focused on reducing symptoms, although emerging therapies seek to counteract its pathophysiological mechanisms.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative pathology. Brain-derived extracellular vesicles (EVs) have been demonstrated to be implicated in AD pathogenesis by facilitating the propagation of Tau, amyloid-β and inflammatory cytokines. However, the impact of peripheral EVs (pEVs) in AD pathogenesis remains poorly investigated.

View Article and Find Full Text PDF

Introduction: Recent research revealed that Tau plays critical roles in various neuronal functions. We previously demonstrated that destabilization and nuclear delocalization of Tau alter the expression of glutamatergic genes, mediating early neuronal damage.

Methods: In this study, we discovered that changes in Tau availability are linked to global alterations in gene expression that affect multiple neuronal pathways.

View Article and Find Full Text PDF

Background: Drowning is a leading cause of death for children. Some populations of children with disabilities, such as children with autism, experience a health disparity in drowning when compared to peers without disabilities.

Objective: This study presents a secondary data analysis of the response to intervention for a 5-day adapted swim instruction program (iCan Swim) for children with disabilities ( = 164 participants) ages 3-18 years.

View Article and Find Full Text PDF

The accumulation of abnormal, non-mutated tau protein is a key pathological hallmark of Alzheimer's disease (AD). Despite its strong association with disease progression, the mechanisms by which tau drives neurodegeneration in the brain remain poorly understood. Here, we selectively expressed non-mutated or mutated human microtubule-associated protein tau ( ) in neurons across the brain and observed neurodegeneration in the hippocampus, especially associated with non-mutated human tau.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!