Despite the great advances that the tissue engineering field has experienced over the last two decades, the amount of in vitro engineered tissues that have reached a stage of clinical trial is limited. While many challenges are still to be overcome, the lack of vascularization represents a major milestone if tissues bigger than approximately 200 µm are to be transplanted. Cell survival and homeostasis is to a large extent conditioned by the oxygen and nutrient transport (as well as waste removal) by blood vessels on their proximity and spontaneous vascularization in vivo is a relatively slow process, leading all together to necrosis of implanted tissues. Thus, in vitro vascularization appears to be a requirement for the advancement of the field. One of the main approaches to this end is the formation of vascular templates that will develop in vitro together with the targeted engineered tissue. Bioprinting, a fast and reliable method for the deposition of cells and materials on a precise manner, appears as an excellent fabrication technique. In this review, we provide a comprehensive background to the fields of vascularization and bioprinting, providing details on the current strategies, cell sources, materials and outcomes of these studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747573 | PMC |
http://dx.doi.org/10.3390/ma12172701 | DOI Listing |
Biofabrication
January 2025
Univ. Bordeaux, INSERM U1026 (BioTis), CHU Bordeaux, Université de Bordeaux Collège Sciences de la Santé, 146 Rue Léo Saignat, Bordeaux, 33000, FRANCE.
Producing oral soft tissues using tissue engineering could compensate for the disadvantages of autologous grafts (limited availability and increased patient morbidity) and currently available substitutes (shrinkage). However, there is a lack of in vitro-engineered oral tissues due to the difficulty of obtaining stable pre-vessels that connect to the host and enable graft success. The main objective was to assess the connection of pre-vascularised 3D-bioprinted gingival substitutes to the host vasculature when subcutaneously implanted in immunodeficient mice.
View Article and Find Full Text PDFBiofabrication
January 2025
Materials Science & Engineering, Stanford University, McCullough 246, 496 Lomita Mall, Stanford, California, 94305-6104, UNITED STATES.
Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process.
View Article and Find Full Text PDFLab Chip
January 2025
Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States.
Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.
View Article and Find Full Text PDFAdv Drug Deliv Rev
December 2024
Translational Medical Sciences, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, the United Kingdom of Great Britain and Northern Ireland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!