Interactions between Autophagy and DNA Viruses.

Viruses

College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China.

Published: August 2019

Autophagy is a catabolic biological process in the body. By targeting exogenous microorganisms and aged intracellular proteins and organelles and sending them to the lysosome for phagocytosis and degradation, autophagy contributes to energy recycling. When cells are stimulated by exogenous pathogenic microorganisms such as viruses, activation or inhibition of autophagy is often triggered. As autophagy has antiviral effects, many viruses may escape and resist the process by encoding viral proteins. At the same time, viruses can also use autophagy to enhance their replication or increase the persistence of latent infections. Here, we give a brief overview of autophagy and DNA viruses and comprehensively review the known interactions between human and animal DNA viruses and autophagy and the role and mechanisms of autophagy in viral DNA replication and DNA virus-induced innate and acquired immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784137PMC
http://dx.doi.org/10.3390/v11090776DOI Listing

Publication Analysis

Top Keywords

dna viruses
12
viruses autophagy
12
autophagy dna
8
autophagy
8
viruses
6
dna
5
interactions autophagy
4
autophagy catabolic
4
catabolic biological
4
biological process
4

Similar Publications

Background: The pathogenic distribution of co-infections and immunological status of patients infected with human adenovirus serotypes 3 or 7 (HAdV-3 or HAdV-7) were poorly understood.

Methods: This study involved a retrospective analysis of respiratory specimens collected from enrolled children with lower respiratory tract infections (LRTIs), positive for HAdV-3 or HAdV-7 from January 2017 to December 2019. Demographic data, clinical features, laboratory and radiographic findings were compared to delineate the impact of co-infections, and immune responses on clinical severity of HAdV-3 or HAdV-7 infections.

View Article and Find Full Text PDF

Long-Term Real-World Outcomes of Tenofovir Alafenamide in Chronic Hepatitis B: Detailed Analysis of Treatment-Naive and Experienced Patients.

Korean J Gastroenterol

January 2025

Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China.

Background/aims: This study assessed the long-term efficacy and safety of tenofovir alafenamide (TAF) in real-world settings.

Methods: Patients who were candidates for TAF treatment and were followed up at 12-week intervals over 192 weeks were enrolled in this study.

Results: One hundred and forty-four patients (50 treatment-naive and 94 treatment-experienced) were included in this study.

View Article and Find Full Text PDF

Background: T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response.

Methods: We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets.

View Article and Find Full Text PDF

Microbiome gained attention as a cofactor in cancers originating from epithelial tissues. High-risk (hr)HPV infection causes oropharyngeal squamous cell carcinoma but only in a fraction of hrHPV+ individuals, suggesting that other factors play a role in cancer development. We investigated oral microbiome in cancer-free subjects harboring hrHPV oral infection (n = 33) and matched HPV- controls (n = 30).

View Article and Find Full Text PDF

Dynamic analysis and optimal control of a hybrid fractional monkeypox disease model in terms of external factors.

Sci Rep

January 2025

Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.

The monkeypox virus (MPXV), which is a member of the Orthopoxvirus genus in the class Poxviridae, is the causative agent of the zoonotic viral infection MPXV. The disease is similar to smallpox, but it is usually less dangerous. This study examines the evolution of the MPXV epidemic in Canada with an emphasis on the effects of control employing actual data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!