This paper has three main purposes. The first is to investigate whether it is appropriate to use a planar thick-film thermoelectric sensor to monitor the temperature difference in a processor heat sink. The second is to compare the efficiency of two heat sink models. The third is to compare two kinds of sensors, differing in length. The model of the CPU heat sink sensor system was designed for numerical simulations. The relations between the CPU, heat sink, and the thermoelectric sensor were modelled because they are important for increasing the efficiency of fast processors without interfering with their internal structure. The heat sink was mounted on the top of the thermal model of a CPU (9.6 W). The plate fin and pin fin heat sinks were investigated. Two planar thermoelectric sensors were mounted parallel to the heat sink fins. These sensors monitored changes in the temperature difference between the CPU and the upper surface of the heat sink. The system was equipped with a cooling fan. Switching on the fan changed the thermal conditions (free or forced convection). The simulation results showed the temperature gradient appearing along the sensor for different heat sinks and under different thermal conditions. Comparison of the results obtained in the simulations of the CPU heat sink sensor systems proves that changes in the cooling conditions can cause a strong, step change in the response of the thermoelectric sensor. The results suggest that usage of the pin fin heat sink model is a better solution for free convection conditions. In the case of strong forced convection the heat sink type ceases to be significant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780977 | PMC |
http://dx.doi.org/10.3390/mi10090556 | DOI Listing |
Heliyon
December 2024
Mechanical and Industrial Engineering Department, Abu Dhabi University, Abu Dhabi, 59911, United Arab Emirates.
With the rising demand of electric vehicles (EVs) and hybrid electric vehicles (HEVs), the necessity for efficient thermal management of Lithium-Ion Batteries (LIB) becomes more crucial. Over the past few years, thermoelectric coolers (TEC) have been increasingly used to cool LIBs effectively. This study provides a comprehensive analysis of thermoelectric technologies for improving the thermal management in LIB Systems.
View Article and Find Full Text PDFUltrasonics
December 2024
LabTAU, INSERM, Centre Leon Berard, Universite Lyon 1, F-69003 LYON, France. Electronic address:
Treating colorectal liver metastases (CLMs) located at the hepatocaval confluence with surgery is challenging due to its complexity and associated high risks of perioperative mortality and morbidity. Moreover, thermal ablation techniques are sensitive to the "heat-sink" effect, which reduces their efficacy when tumors are in contact with major blood vessels. In this study we evaluated the feasibility and safety of an intraoperative high-intensity focused ultrasound (HIFU) device for destroying liver tissue volumes sufficiently large to consider treating CLMs at the hepatocaval confluence.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Deep Space Exploration Laboratory/Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China.
This paper performed a comprehensive study of the thermal nonequilibrium effects of CO/Ar mixtures with various degrees of N2 additions and probed the N2 relaxation behaviors via the CO rovibrational thermometry. The rovibrational temperature time histories of shock-heated CO/N2/Ar mixtures were measured via a laser-absorption technique, and the corresponding vibrational relaxation data were summarized at 1890-3490 K. The measured results were compared with predictions from the Schwartz-Slawsky-Herzfeld (SSH) formula and the state-to-state (StS) approach (treating CO and N2 as pseudo-species).
View Article and Find Full Text PDFNatl Sci Rev
December 2024
Laboratoire des Sciences du Climat et de l'Environnement, University Paris Saclay CEA CNRS, Gif sur Yvette 91191, France.
In 2023, the CO growth rate was 3.37 ± 0.11 ppm at Mauna Loa, which was 86% above that of the previous year and hit a record high since observations began in 1958, while global fossil fuel CO emissions only increased by 0.
View Article and Find Full Text PDFCell
December 2024
Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
A 2°C climate-warming scenario is expected to further exacerbate average crop losses by 3%-13%, yet few heat-tolerant staple-crop varieties are available toward meeting future food demands. Here, we develop high-efficiency prime-editing tools to precisely knockin a 10-bp heat-shock element (HSE) into promoters of cell-wall-invertase genes (CWINs) in elite rice and tomato cultivars. HSE insertion endows CWINs with heat-responsive upregulation in both controlled and field environments to enhance carbon partitioning to grain and fruits, resulting in per-plot yield increases of 25% in rice cultivar Zhonghua11 and 33% in tomato cultivar Ailsa Craig over heat-stressed controls, without fruit quality penalties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!