https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=31450604&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3145060420200929
1996-194412172019Aug24Materials (Basel, Switzerland)Materials (Basel)Increased Sustainability of Carbon Dioxide Mineral Sequestration by a Technology Involving Fly Ash Stabilization.271410.3390/ma12172714Mineral carbonation, involving reactions of alkaline earth oxides with CO2, has received great attention, as a potential carbon dioxide sequestration technology. Indeed, once converted into mineral carbonate, CO2 can be permanently stored in an inert phase. Several studies have been focalized to the utilization of industrial waste as a feedstock and the reuse of some by-products as possible materials for the carbonation reactions. In this work municipal solid waste incineration fly ash and other ashes, as bottom ash, coal fly ash, flue gas desulphurization residues, and silica fume, are stabilized by low-cost technologies. In this context, the CO2 is used as a raw material to favor the chemical stabilization of the wastes, by taking advantage of the pH reduction. Four different stabilization treatments at room temperature are performed and the carbonation reaction evaluated for three months. The crystalline calcium carbonate phase was quantified by the Rietveld analysis of X-ray diffraction (XRD) patterns. Results highlight that the proposed stabilization strategy promotes CO2 sequestration, with the formation of different calcium carbonate phases, depending on the wastes. This new sustainable and promising technology can be an alternative to more onerous mineral carbonation processes for the carbon dioxide sequestration.AssiAhmadAINSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.FedericiStefaniaSINSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.BiloFabjolaFINSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.ZaccoAnnalisaAINSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.DeperoLaura ELEINSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.BontempiElzaE0000-0003-1656-7506INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy. elza.bontempi@unibs.it.engJournal Article20190824
SwitzerlandMaterials (Basel)1015559291996-1944carbon dioxide sequestrationfly ashmunicipal solid waste incinerationstabilization“The authors declare no conflict of interest.” “The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.”
2019722201981420198212019828602019828602019828612019824epublish31450604PMC674760910.3390/ma12172714ma12172714Rahmani O. CO2 sequestration by indirect mineral carbonation of Ind. waste red gypsum. J. CO2 Util. 2018;27:374–380. doi: 10.1016/j.jcou.2018.08.017.10.1016/j.jcou.2018.08.017Kaliyavaradhan S.K., Ling T.-C. Potential of CO2 sequestration through construction and demolition (C&D) waste—An overview. J. CO2 Util. 2017;20:234–242.Sanna A., Uibu M., Caramanna G., Kuusik R., Maroto-Valer M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014;43:8049–8080. doi: 10.1039/C4CS00035H.10.1039/C4CS00035H24983767Saran R.K., Arora V., Yadav S. Copyright© 2018 Global NEST Printed in Greece. All rights reserved. CO2 Glob. NEST J. 2018;20:497–503.Rahmani O., Kadkhodaie A., Highfield J. Kinetics Analysis of CO2 Mineral Carbonation Using Byproduct Red Gypsum. Energy Fuels. 2016;30:7460–7464. doi: 10.1021/acs.energyfuels.6b00246.10.1021/acs.energyfuels.6b00246Wang T., Huang H., Hu X., Fang M., Luo Z., Guo R. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate. Chem. Eng. J. 2017;323:320–329. doi: 10.1016/j.cej.2017.03.157.10.1016/j.cej.2017.03.157McCutcheon J., Power I.M., Shuster J., Harrison A.L., Dipple G.M., Southam G. Carbon Sequestration in Biogenic Magnesite and Other Magnesium Carbonate Minerals. Environ. Sci. Technol. 2019;53:3225–3237. doi: 10.1021/acs.est.8b07055.10.1021/acs.est.8b0705530786208Gadikota G., Matter J., Kelemen P., Park A.A. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys. Chem. Chem. Phys. 2014;16:4679. doi: 10.1039/c3cp54903h.10.1039/c3cp54903h24469156Wee J.-H. A review on carbon dioxide capture and storage technology using coal fly ash. Appl. Energy. 2013;106:143–151. doi: 10.1016/j.apenergy.2013.01.062.10.1016/j.apenergy.2013.01.062Huntzinger D.N., Gierke J.S., Sutter L.L., Kawatra S.K., Eisele T.C. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J. Hazard. Mater. 2009;168:31–37. doi: 10.1016/j.jhazmat.2009.01.122.10.1016/j.jhazmat.2009.01.12219269085Siriwardena D.P., Peethamparan S. Quantification of CO2 sequestration capacity and carbonation rate of alkaline industrial byproducts. Constr. Build. Mater. 2015;91:216–224. doi: 10.1016/j.conbuildmat.2015.05.035.10.1016/j.conbuildmat.2015.05.035Baciocchi R., Costa G., Polettini A., Pomi R., Stramazzo A., Zingaretti D. Accelerated Carbonation of Steel Slags Using CO2 Diluted Sources: CO2 Uptakes and Energy Requirements. Front. Energy Res. 2016;3:56. doi: 10.3389/fenrg.2015.00056.10.3389/fenrg.2015.00056Harrison A.L., Power I.M., Dipple G.M. Accelerated Carbonation of Brucite in Mine Tailings for Carbon Sequestration. Environ. Sci. Technol. 2013;47:126–134. doi: 10.1021/es3012854.10.1021/es301285422770473Mastali M., Abdollahnejad Z. Carbon Dioxide Sequestration Cementitious Construction Materials. 1st ed. Woodhead Publishing; Cambridge, UK: 2018. Carbon dioxide sequestration on fly ash/waste glassalkali-based mortars with recycled aggregates: Compressive strength, hydration products, carbon footprint, and cost analysis; pp. 299–348.Mastali M., Abdollahnejad Z., Pacheco-Torgal F. Performance of waste based alkaline mortars submitted to accelerated carbon dioxide curing. Resour. Conserv. Recycl. 2018;129:12–19. doi: 10.1016/j.resconrec.2017.10.017.10.1016/j.resconrec.2017.10.017Rendek E., Ducom G., Germain P. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J. Hazard. Mater. 2006;128:73–79. doi: 10.1016/j.jhazmat.2005.07.033.10.1016/j.jhazmat.2005.07.03316139424Quina M.J., Bontempi E., Bogush A., Schlumberger S., Weibel G., Braga R., Funari V., Hyks J., Rasmussen E., Lederer J. Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. Sci. Total Environ. 2018;635:526–542. doi: 10.1016/j.scitotenv.2018.04.150.10.1016/j.scitotenv.2018.04.15029679825Struis R.P.W.J., Pasquali M., Borgese L., Gianoncelli A., Gelfi M., Colombi P., Thiaudière D., Depero L.E., Rizzo G., Bontempi E. Inertisation of heavy metals in municipal solid waste incineration fly ash by means of colloidal silica—A synchrotron X-ray diffraction and absorption study. RSC Adv. 2013;3:14339. doi: 10.1039/c3ra41792a.10.1039/c3ra41792aBontempi E. SpringerBriefs in Applied Sciences and Technology. Springer International Publishing; Cham, Switzerland: 2017. Raw Materials Substitution Sustainability.Zanoletti A., Bilo F., Depero L.E., Zappa D., Bontempi E. The first sustainable material designed for air particulate matter capture: An introduction to Azure Chemistry. J. Environ. Manag. 2018;218:355–362. doi: 10.1016/j.jenvman.2018.04.081.10.1016/j.jenvman.2018.04.08129704831Benassi L., Zanoletti A., Depero L.E., Bontempi E. Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals. J. Environ. Manag. 2019;245:464–470. doi: 10.1016/j.jenvman.2019.05.104.10.1016/j.jenvman.2019.05.10431170635Bontempi E. A new approach for evaluating the sustainability of raw materials substitution based on embodied energy and the CO2 footprint. J. Clean. Prod. 2017;162:162–169. doi: 10.1016/j.jclepro.2017.06.028.10.1016/j.jclepro.2017.06.028Huijgen W.J.J., Comans R.N.J. Literature Review and Selection of Residue. Energy research Centre of the Netherlands ECN; Sint Maartensvlotbrug, Netherlands: 2005. Mineral CO2 sequestration by carbonation of industrial residues. No. ECN-C--05-074.Teir S., Eloneva S., Fogelholm C.-J., Zevenhoven R. Fixation of carbon dioxide by producing hydromagnesite from serpentinite. Appl. Energy. 2009;86:214–218. doi: 10.1016/j.apenergy.2008.03.013.10.1016/j.apenergy.2008.03.013Pasquali M., Zanoletti A., Benassi L., Federici S., Depero L.E., Bontempi E. Stabilized biomass ash as a sustainable substitute for commercial P-fertilizers. L. Degrad. Dev. 2018;29:2199–2207. doi: 10.1002/ldr.2915.10.1002/ldr.2915Liu M., Gadikota G. Phase Evolution and Textural Changes during the Direct Conversion and Storage of CO2 to Produce Calcium Carbonate from Calcium Hydroxide. Geosciences. 2018;8:445. doi: 10.3390/geosciences8120445.10.3390/geosciences8120445Bontempi E., Zacco A., Borgese L., Gianoncelli A., Ardesi R., Depero L.E. A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J. Environ. Monit. 2010;12:2093–2099. doi: 10.1039/c0em00168f.10.1039/c0em00168f20959931Rodella N., Bosio A., Dalipi R., Zacco A., Borgese L., Depero L.E., Bontempi E. Waste silica sources as heavy metal stabilizers for municipal solid waste incineration fly ash. Arab. J. Chem. 2017;10:S3676–S3681. doi: 10.1016/j.arabjc.2014.04.006.10.1016/j.arabjc.2014.04.006Doebelin N., Kleeberg R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015;48:1573–1580. doi: 10.1107/S1600576715014685.10.1107/S1600576715014685PMC460327326500466Rietveld H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969;2:65–71. doi: 10.1107/S0021889869006558.10.1107/S0021889869006558Fahimi A., Bilo F., Dalipi R., Assi A., Federici S., Guedes A., Valentim B., Bontempi E. Raw materials and sustainability: Could poultry litter ash be used as heavy metals stabilizer instead of other resources? J. Waste Manag. under review.Benassi L., Pasquali M., Zanoletti A., Dalipi R., Borgese L., Depero L.E., Vassura I., Quina M.J., Bontempi E. Chemical Stabilization of Municipal Solid Waste Incineration Fly Ash without Any Commercial Chemicals: First Pilot-Plant Scaling Up. ACS Sustain. Chem. Eng. 2016;4:5561–5569. doi: 10.1021/acssuschemeng.6b01294.10.1021/acssuschemeng.6b01294Assi A., Bilo F., Zanoletti A., Ponti J., Valsesia A., La Spina R., Zacco A., Bontempi E., Zacco E.B. Urban mining of waste-to-energy residues for a zero-waste approach in municipal solid waste incineration. J. Clean. Prod. under review.Bosio A., Zacco A., Borgese L., Rodella N., Colombi P., Benassi L., Depero L.E., Bontempi E. A sustainable technology for Pb and Zn stabilization based on the use of only waste materials: A green chemistry approach to avoid chemicals and promote CO2 sequestration. Chem. Eng. J. 2014;253:377–384. doi: 10.1016/j.cej.2014.04.080.10.1016/j.cej.2014.04.080Benassi L., Dalipi R., Consigli V., Pasquali M., Borgese L., Depero L.E., Clegg F., Bingham P.A., Bontempi E. Integrated management of ash from industrial and domestic combustion: A new sustainable approach for reducing greenhouse gas emissions from energy conversion. Environ. Sci. Pollut. Res. 2017;24:14834–14846. doi: 10.1007/s11356-017-9037-y.10.1007/s11356-017-9037-y28477251Wei Y., Shimaoka T., Saffarzadeh A., Takahashi F. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. J. Hazard. Mater. 2011;187:534–543. doi: 10.1016/j.jhazmat.2011.01.070.10.1016/j.jhazmat.2011.01.07021316147Chang R., Choi D., Kim M.H., Park Y. Tuning Crystal Polymorphisms and Structural Investigation of Precipitated Calcium Carbonates for CO2 Mineralization. ACS Sustain. Chem. Eng. 2017;5:1659–1667. doi: 10.1021/acssuschemeng.6b02411.10.1021/acssuschemeng.6b02411Tian S., Jiang J. Sequestration of Flue Gas CO2 by Direct Gas–Solid Carbonation of Air Pollution Control System Residues. Environ. Sci. Technol. 2012;46:13545–13551. doi: 10.1021/es303713a.10.1021/es303713a23181908Liu W., Su S., Xu K., Chen Q., Xu J., Sun Z., Wang Y., Hu S., Wang X., Xue Y., et al. CO2 sequestration by direct gas–solid carbonation of fly ash with steam addition. J. Clean. Prod. 2018;178:98–107. doi: 10.1016/j.jclepro.2017.12.281.10.1016/j.jclepro.2017.12.281Sarkar A., Mahapatra S. Synthesis of All Crystalline Phases of Anhydrous Calcium Carbonate. Cryst. Growth Des. 2010;10:2129–2135. doi: 10.1021/cg9012813.10.1021/cg9012813