Objective: Radiogenomics investigates radiographic imaging phenotypes associated with gene expression patterns. This study aims to explore relationships between CT imaging radiomics features and gene expression data in non-small cell lung cancer (NSCLC).

Methods: Eighty-nine NSCLC patients are included in the study. Radiomics features are extracted and selected to quantify the phenotype of tumors on CT-scans. Co-expressed genes are also clustered and the first principal component of the cluster is represented, which is defined as a metagene. Then, statistical analysis was performed to assess association of CT radiomics features with metagenes. In addition, predictive models are built and metagene enrichment are conducted to further evaluate performance of NSCLC radiogenomics statistically and biologically.

Results: There are 187 significant pairwise correlations between a CT radiomics feature and a metagene of NSCLC, where eighteen metagenes are annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. Metagenes are predicted in terms of radiomics features with an accuracy of 41.89% -89.93%.

Conclusions: This study reveals the associations between CT imaging radiomics features and NSCLC co-expressed gene sets. The findings suggest that CT radiomics features can reflect important biological information of NSCLC patients, which may have a significant clinical impact as CT is routinely used in clinical practice, assisting in improving medical decision-support at low cost.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-190526DOI Listing

Publication Analysis

Top Keywords

radiomics features
28
gene expression
12
radiomics
8
features gene
8
expression data
8
data non-small
8
non-small cell
8
cell lung
8
lung cancer
8
imaging radiomics
8

Similar Publications

Ultrasound radiomics predict the success of US-guided percutaneous irrigation for shoulder calcific tendinopathy.

Jpn J Radiol

January 2025

Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.

Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.

View Article and Find Full Text PDF

Glioma is characterized by high heterogeneity and poor prognosis. Attempts have been made to understand its diversity in both genetic expressions and radiomic characteristics, while few integrated the two omics in predicting survival of glioma. This study was intended to investigate the connection between glioma imaging and genome, and examine its predictive value in glioma mortality risk and tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization.

Cancer Biol Med

January 2025

Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.

Artificial intelligence (AI) is significantly advancing precision medicine, particularly in the fields of immunogenomics, radiomics, and pathomics. In immunogenomics, AI can process vast amounts of genomic and multi-omic data to identify biomarkers associated with immunotherapy responses and disease prognosis, thus providing strong support for personalized treatments. In radiomics, AI can analyze high-dimensional features from computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) images to discover imaging biomarkers associated with tumor heterogeneity, treatment response, and disease progression, thereby enabling non-invasive, real-time assessments for personalized therapy.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease is partially characterized by the progressive accumulation of aggregated tau-containing neurofibrillary tangles. Although the association between accumulated tau, neurodegeneration, and cognitive decline is critical for disease understanding and clinical trial design, we still lack robust tools to predict individualized trajectories of tau accumulation. Our objective was to assess whether brain imaging biomarkers of flortaucipir-positron emission tomography (PET), in combination with clinical and genomic measures, could predict future pathological tau accumulation.

View Article and Find Full Text PDF

Objectives: To develop ultrasound-based radiomics models and a clinical model associated with inflammatory markers for predicting intrahepatic cholangiocarcinoma (ICC) lymph node (LN) metastasis. Both are integrated for enhanced preoperative prediction.

Methods: This study retrospectively enrolled 156 surgically diagnosed ICC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!