Tau is a microtubule-associated protein that normally interacts in monomeric form with the neuronal cytoskeleton. In Alzheimer's disease, however, it aggregates to form the structural component of neurofibrillary lesions. The transformation is controlled in part by age- and disease-associated post-translational modifications. Recently we reported that tau isolated from cognitively normal human brain was methylated on lysine residues, and that high-stoichiometry methylation depressed tau aggregation propensity in vitro. However, whether methylation stoichiometry reached levels needed to influence aggregation propensity in human brain was unknown. Here we address this problem using liquid chromatography-tandem mass spectrometry approaches and human-derived tau samples. Results revealed that lysine methylation was present in soluble tau isolated from cognitively normal elderly cases at multiple sites that only partially overlapped with the distributions reported for cognitively normal middle aged and AD cohorts, and that the quality of methylation shifted from predominantly dimethyl-lysine to monomethyl-lysine with aging and disease. However, bulk mol methylation/mol tau stoichiometries never exceeded 1 mol methyl group/mol tau protein. We conclude that lysine methylation is a physiological post-translational modification of tau protein that changes qualitatively with aging and disease, and that pharmacological elevation of tau methylation may provide a means for protecting against pathological tau aggregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844542PMC
http://dx.doi.org/10.3233/JAD-190604DOI Listing

Publication Analysis

Top Keywords

tau protein
12
lysine methylation
12
cognitively normal
12
tau
10
alzheimer's disease
8
tau isolated
8
isolated cognitively
8
human brain
8
tau aggregation
8
aggregation propensity
8

Similar Publications

Highly reactive metabolic intermediates and other small molecules frequently react with amino acid side chains, leading to non-enzymatic posttranslational modifications (nPTMs) of proteins. The abundance of these modifications increases under high metabolic activity or stress conditions and can dramatically impact protein structure and function. Although protein quality control mechanisms typically mitigate the effects of these impaired proteins, in long-lived and degradation-resistant proteins, nPTMs accumulate.

View Article and Find Full Text PDF

Frontotemporal dementia with parkinsonism-17 is a neurodegenerative disease characterised by pathological aggregation of the tau protein with the formation of neurofibrillary tangles and subsequent neuronal death. The inherited form of frontotemporal dementia can be caused by mutations in several genes, including the MAPT gene on chromosome 17, which encodes the tau protein. As there are currently no medically approved treatments for frontotemporal dementia, there is an urgent need for research using in vitro cell models to understand the molecular genetic mechanisms that lead to the development of the disease, to identify targets for therapeutic intervention and to test potential drugs to prevent neuronal death.

View Article and Find Full Text PDF

Unraveling APOE4's Role in Alzheimer's Disease: Pathologies and Therapeutic Strategies.

Curr Protein Pept Sci

December 2024

Department of Pharmaceutical Engineering & Technology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India.

Alzheimer's disease (AD), the most common kind of dementia worldwide, is characterized by elevated levels of the amyloid-β (Aβ) peptide and hyperphosphorylated tau protein in the neurons. The complexity of AD makes the development of treatments infamously challenging. Apolipoprotein E (APOE) genes's ɛ4 allele is one of the main genetic risk factors for AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the predominant form of dementia, is a neurodegenerative disorder of the central nervous system (CNS) characterized by a subtle onset and a spectrum of cognitive and functional declines. The clinical manifestation of AD encompasses memory deficits, cognitive deterioration, and behavioral disturbances, culminating in a severe impairment of daily living skills. Despite its high prevalence, accounting for 60-70% of all dementia cases, there remains an absence of curative therapeutics.

View Article and Find Full Text PDF

3-Dimensional morphological characterization of neuroretinal microglia in Alzheimer's disease via machine learning.

Acta Neuropathol Commun

December 2024

Department of Ophthalmology and Visual Sciences, The University of British Columbia, 2550 Willow St. Room 375, Vancouver, BC, V5Z 3N9, Canada.

Alzheimer's Disease (AD) is a debilitating neurodegenerative disease that affects 47.5 million people worldwide. AD is characterised by the formation of plaques containing extracellular amyloid-β (Aβ) and neurofibrillary tangles composed of hyper-phosphorylated tau proteins (pTau).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!