Spent coffee grounds (SCG) immobilized in agarose gel are proposed as a novel binding agent for application in the Diffusive Gradients in Thin films (DGT) technique for the determination of Cd, Cu, Ni, Pb and Zn in waters. The SCG-agarose gel was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray Spectrometry and Porosimetry by nitrogen adsorption. Elution of analytes from the binding agent was effectively performed with 2 mol L HCl. The effects of key DGT parameters (e.g. immersion time, ionic strength and pH) were evaluated with a deployment of DGT devices (DGT-SCG) in synthetic solutions with ionic strengths between 0.005 mol L and 0.1 mol L and within a pH range of 3.5-8.0. The results were in excellent agreement with the predicted theoretical curve for mass uptake. Consistent results were found for solutions with ionic strengths between 0.005 mol L and 0.1 mol L and within a pH range of 3.5-8.0. The DGT-SCG performance was also evaluated in two spiked river water samples (Corumbataí and Piracicaba river) with satisfactory uptake values (C/C) between 0.74 and 1.53. The proposed DGT-SCG opens opportunities for using residual biomass as binding phase in the DGT technique, showing low costs in production and complying with "green" technology approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2019.120148DOI Listing

Publication Analysis

Top Keywords

binding agent
12
residual biomass
8
diffusive gradients
8
dgt technique
8
solutions ionic
8
ionic strengths
8
strengths 0005 mol l
8
0005 mol l 01 mol l
8
01 mol l range
8
range 35-80
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!