Varnishes are normally applied on printed food packaging to protect it from smearing and scratching. Moreover, they may be applied on the food contact surface in order to improve resistance towards moisture and fat. Some of the compounds that make up the varnish formulation could migrate to the food. In this work, the ion mobility quadrupole time-of-flight mass spectrometry has been used to obtain drift time-aligned mass spectra in which accurate the mass of precursor ions and their fragments are used to identify both intentionally and non-intentionally added substances (NIAS). The compound 2-propenoic acid,1,1'-[2-[[3-[2,2-bis[[(1-oxo-2-propen-1-yl)oxy]methyl]butoxy]-1-oxopropoxy]methyl]-2-ethyl-1,3-propanediyl] ester was identified as a NIAS formed from the varnish monomer 2-propenoic acid, 1,1'-[2-ethyl-2-[[(1-oxo-2-propen-1-yl)oxy]methyl]-1,3-propanediyl] ester. The compound 5, 11-diethyl-7-oxo-4,6,10,12-tetraoxopentadecane-3,13-diyl diacrylate is a NIAS derived from the varnish monomer 2-propenoic acid, 1,1'-[oxybis(methyl-2,1-ethanediyl)] ester, and was found to migrate into the food simulant tested at a level of 0.03 mg kg. Finally, the NIAS, 2-{2-[2-(acryloyloxy)-1-methylethoxy]-1-methylethoxy}-1-methylethyl acrylate, an impurity of a photoinitiator used for UV curing of the varnish, was identified, and its migration of 0.14 mg kg exceeded the threshold established as safe for human consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2019.06.103 | DOI Listing |
Anal Methods
January 2025
College of Life Sciences, Linyi University, Linyi 276000, China.
Wasabi is a type of sauce made from the plant horseradish. During its production and storage, gas production sometimes occurs, which leads to changes in the flavor quality of wasabi. In this study, an electronic nose, electronic tongue, headspace-gas chromatography-mass spectrometry and headspace-gas chromatography-ion mobility spectrometry combined with multivariate statistical analysis were used to compare the differences in odor, taste and volatile components between normal and gas-producing wasabi.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beihang University, 37 Xue Yuan Road, Hai Dian District, 100191, Beijing, CHINA.
Sodium-ion batteries (SIBs), endowed with relatively small Stokes radius and low desolvation energy for Na+, are reckoned as a promising candidate for fast-charging endeavors. However, the C-rate charging capability of practical energy-dense sodium-ion pouch cells is currently limited to ≤1C, due to the high propensity for detrimental metallic Na plating on the hard carbon (HC) anode at elevated rates. Here, an ampere-hour-level sodium-ion pouch cell capable of 3C charging is successfully developed via phosphorus (P)-sulfur (S) interphase chemistry.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland.
We report spectroscopic and spectrometric experiments that probe the London dispersion interaction between -butyl substituents in three series of covalently linked, protonated -pyridines in the gas phase. Molecular ions in the three test series, along with several reference molecules for control, were electrosprayed from solution into the gas phase and then probed by infrared multiphoton dissociation spectroscopy and trapped ion mobility spectrometry. The observed N-H stretching frequencies provided an experimental readout diagnostic of the ground-state geometry of each ion, which could be furthermore compared to a second, independent structural readout via the collision cross section.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!