A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices. | LitMetric

T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices.

Talanta

Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Bangkok, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand. Electronic address:

Published: December 2019

This work presents the use of polyvinyl chloride (PVC) fabric ink, commonly employed for screening t-shirts, as new and versatile material for printing hydrophobic barrier on paper substrate for microfluidic paper-based analytical devices (μPADs). Low-cost, screen-printing apparatus (e.g., screen mesh, squeegee, and printing table) and materials (e.g. PVC ink and solvent) were employed to print the PVC ink solution onto Whatman filter paper No. 4. This provides a one-step strategy to print flow barriers without the need of further processing except evaporation for 3-5 min in a fume hood to remove the solvent. The production of the single layer μPADs is reasonably high with up to 77 devices per screening with 100% success rate. This method produces very narrow fluidic channel 486 ± 14 μm in width and hydrophobic barrier of 642 ± 25 μm thickness. Reproducibility of the production of fluidic channels and zones is satisfactory with RSDs of 2.9% (for 486-μm channel, n = 10), 3.7% (for 2-mm channel, n = 50) and 1.5% (for 6-mm diameter circular zone, n = 80). A design of a 2D-μPAD produced by this method was employed for the colorimetric dual-measurements of thiocyanate and nitrite in saliva. A 3D-μPADs with multiple layers of ink-screened paper was designed and constructed to demonstrate the method's versatility. These 3D-μPADs were designed for gas-liquid separation with in-situ colorimetric detection of ethanol vapor on the μPADs. The 3D-μPADs were applied for direct quantification of ethanol in beverages and highly colored pharmaceutical products. The printed barrier was resistant up to 8% (v/v) ethanol without liquid creeping out of the barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2019.120113DOI Listing

Publication Analysis

Top Keywords

paper-based analytical
8
analytical devices
8
hydrophobic barrier
8
pvc ink
8
t-shirt ink
4
ink one-step
4
one-step screen-printing
4
screen-printing hydrophobic
4
hydrophobic barriers
4
barriers 2d-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!