It is important to establish an available analytical method for polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs (nitro-PAHs), oxygenated forms of PAHs (oxy-PAHs), and hydroxy-PAHs (OH-PAHs) in sediment samples due to the fact that they co-exist in various environmental mediates, particularly in sediment. In this study, an analytical method has been developed and validated for the quantification of PAHs, nitro-PAHs, oxy-PAHs, and OH-PAHs in sediment samples. The sediment samples were extracted by accelerated solvent extraction and cleaned up with SPE alumina-n combining with aminopropyl cartridges. The extracts were further fractionated by using different solvents. The fractionated extracts were analyzed via gas chromatography of single and triple quadrupole mass spectrometry in the electron ionization and negative ion chemical ionization with selective ion monitoring and selective reaction monitoring mode and liquid chromatography-triple quadrupole mass spectrometry. Each group of analytes was determined by different instrument modes such as GC-EI-SIM for PAHs, GC-NICI-SRM for nitro-PAHs, GC-EI-SRM for the oxy-PAHs and LC-ESI-MS/MS for OH-PAHs. A total of 44 analytes (16 PAHs, 14 nitro-PAHs, 9 oxy-PAHs, and 5 OH-PAHs) and 6 deuterated surrogates were performed. Most of recovery percentage varied from 52.8% up to 114.1% for the targeted analytes verified at three concentration levels (100 ng/g, 400 ng/g and 1000 ng/g for PAHs and 10 ng/g, 50 ng/g and 400 ng/g for their derivatives). The repeatability determined by the relative standard deviation percentage of triplicate trials was less than 10% for most analytes. The limit of detection ranged from 0.01 to 0.02 ng/g for PAHs, 0.002-0.067 ng/g for nitro-PAHs, 0.01-0.1 ng/g for oxy-PAHs, and 0.003-0.006 ng/g for OH-PAHs. Most of the compounds were detectable in the sediments collected from a local River, which illustrates the developed method could be a practical and suitable technique for detection of PAHs and their derivatives in real sediment samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2019.120128 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.
Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.
View Article and Find Full Text PDFClin Chem Lab Med
January 2025
Department of Nephrology, Ghent University Hospital Ghent, Belgium.
Objectives: We evaluated the performance of a novel flow cell morphology analyzer AUTION EYE AI-4510 for counting particles in urine.
Methods: Analytical performance was assessed according to the EFLM European Urinalysis Guideline 2023. Trueness was compared by analyzing 1.
Chem Eng J
July 2024
Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea.
Microplastics (MPs) have been detected in various environmental matrices, drinking water, and food, and their presence is an ecological and human health concern. Most research on MPs has focused solely on their detection and analysis. However, sample pretreatment methods are critical for accurate MP analysis and must be properly established.
View Article and Find Full Text PDFMicrob Ecol
January 2025
IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.
View Article and Find Full Text PDFNat Commun
January 2025
Reservoir Technology Department, Institute for Energy Technology, 2007, Kjeller, Norway.
Borealis is a recently discovered submerged mud volcano in the Polar North Atlantic, differing from the numerous methane seepages previously identified in the region. Here we show in situ observations from a remotely operated vehicle (ROV), capturing the release of warm (11.5 °C) Neogene sediments and methane-rich fluids from a gryphon at Borealis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!