Investigations in ultrasonic enhancement of β-carotene production by isolated microalgal strain Tetradesmus obliquus SGM19.

Ultrason Sonochem

Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India. Electronic address:

Published: November 2019

Microalgae constitute relatively novel source of lipids for biodiesel production. The economy of this process can be enhanced by the recovery of β-carotenes present in the microalgal cells. The present study has addressed matter of enhancement of lipids and β-carotene production by microalgal species of Tetradesmus obliquus SGM19 with the application of sonication. As first step, the growth cycle of Tetradesmus obliquus SGM19 was optimized using statistical experimental design. Optimum parameters influencing microalgal growth were: Sodium nitrate = 1.5 g/L, ethylene diamine tetraacetic acid = 0.001 g/L, temperature = 28.5 °C, pH = 7.5, light intensity = 5120 lux, β-carotene yield = 0.67 mg/g DCW. Application of 33 kHz and 1.4 bar ultrasound at 10% duty cycle was revealed to enhance the lipid and β-carotene yields by 34.5% and 31.5%, respectively. Kinetic analysis of substrate and product profiles in control and test experiments revealed both lipid and β-carotene to be growth-associated products. The intracellular NAD(H) content during late log phase was monitored in control and test experiments as a measure of relative kinetics of intracellular metabolism. Consistently higher NAD(H) concentrations were observed for test experiments; indicating faster metabolism. Finally, the viability of ultrasound-exposed microalgal cells (assessed with flow cytometry) was >80%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2019.104697DOI Listing

Publication Analysis

Top Keywords

tetradesmus obliquus
12
obliquus sgm19
12
test experiments
12
β-carotene production
8
microalgal cells
8
lipid β-carotene
8
control test
8
β-carotene
5
microalgal
5
investigations ultrasonic
4

Similar Publications

Piggery wastewater treatment by solar photo-Fenton coupled with microalgae production.

Water Res

March 2025

LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, Lisbon 1649-038, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.

Pig farming generates highly polluted wastewater that requires effective treatment to minimize environmental damage. Microalgae can recover nutrients from piggery wastewater (PWW), but excessive nutrient and turbidity levels inhibit their growth. Solar photo-Fenton (PF) offer a sustainable and cost-effective pretreatment to allow microalgal growth for further PWW treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Microalgae-based DeNOx technology is a new method for removing nitrogen oxides (NOx) from flue gas, particularly effective for medium to low concentrations.
  • The study investigates the mechanisms of NO removal by microalgae, specifically the T. obliquus PF3 strain, which enhances NO transfer through various processes like secretion of substances and adsorption.
  • It concludes that the main NO removal pathway is through its transformation and assimilation in the liquid phase of the algal culture, providing insights for improving microalgae DeNOx technology design and implementation.
View Article and Find Full Text PDF

Microalgae are promising sources of intracellular metabolites such as proteins, polysaccharides, pigments, and lipids. Thus, this study applied high-pressure homogenization (HPH) techniques on a pilot scale to disrupt the cells of Tetradesmus obliquus. The effects of pressure (P; 150, 250, and 350 bar), suspension concentration (Cs; 1.

View Article and Find Full Text PDF

Monocultures vs. polyculture of microalgae: unveiling physiological changes to facilitate growth in ammonium rich-medium.

Physiol Plant

October 2024

Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.

Due to the increasing production of wastewater from human activities, the use of algal consortia for phytoremediation has become well-established over the past decade. Understanding how interspecific interactions and cultivation modes (monocultures vs. polyculture) influence algal growth and behaviour is a cutting-edge topic in both fundamental and applied science.

View Article and Find Full Text PDF

Novel three-stage microalgal cultivation system for lipid production utilizing nutrients derived from refinery waste.

Bioresour Technol

December 2024

SINOPEC Jinling Company, Water Treatment Department, Nanjing 210033, China.

The pollution and transformation of refineries are receiving increasing attention. The carbonic anhydrase in Tetradesmus obliquus was found exhibiting a hysteresis phenomenon in response to periodic changes in the composition of external carbon sources, with a surge in inorganic carbon concentration stressing the carbonic anhydrase activity to increase by 6-9 times. On this basis, a novel three-stage culture system of T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!