In this study, starch nanoparticles (SNPs) were fabricated via a facile and green method involving a vacuum low-temperature plasma process combined with rapid ultrasonication treatment using waxy corn starch (WCS) and potato starch (PS). Morphology, size, crystalline structure, thermal property, and stability analyses of the SNPs were systematically performed. The obtained SNPs exhibited good uniformity and almost perfect spherical and square shapes. The zeta potential and Fourier transform infrared spectroscopy results confirmed that the SNPs were covered with negative carboxyl groups (zeta potential ranging from -21.8 ± 1.06 to -9.78 ± 0.89 mV). The gelatinization enthalpy of SNPs from PS significantly decreased, changing from 16.63 ± 0.91 to 9.81 ± 0.19 J/g. However, the crystal patterns of SNPs from the WCS and PS after plasma and ultrasonic treatments did not change. The crystallinity of SNPs from PS decreased from 45.2% to 16.5%. This novel approach to preparing SNPs is low cost, simple and green. The developed SNPs could have great potential in the food, biomedical, and material industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2019.104660DOI Listing

Publication Analysis

Top Keywords

snps
9
starch nanoparticles
8
plasma process
8
process combined
8
ultrasonication treatment
8
zeta potential
8
snps decreased
8
green preparation
4
preparation characterization
4
starch
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!