An environmentally friendly one-pot synthesis approach for the decoration of Pd-Ag nanoparticles with the ultrasmall size on graphene (Pd-Ag/G) by the assistance of ultrasound is proposed in this paper. This method offers exceptional advantages over other approaches such as environmentally friendly synthesis, being low temperature, reductant, surfactant free, simple, fast and one-pot synthesis. In this work, silver formate is added to the graphene suspension at 25 °C. Then, PdCl is added to the suspension under stirring to fabricate Pd-Ag/G. The uniform dispersity of nanoparticles with an average size of about 2-3 nm is well confirmed by transmission electron microscopy micrographs. The resultant catalyst is applied as anode electrocatalyst towards electrooxidation reaction of ethanol. The Pd-Ag/G catalyst displays exceptional catalytic activity and durability towards electro-oxidation of ethanol. According to the obtained results, it be concluded that the combination of Ag and Pd, ultrasmall and uniform distribution of Pd-Ag nanoparticles led to the improvement of electrocatalytic activity of the Pd-Ag/G catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2019.104616DOI Listing

Publication Analysis

Top Keywords

environmentally friendly
12
one-pot synthesis
12
friendly one-pot
8
pd-ag nanoparticles
8
pd-ag/g catalyst
8
synthesis
4
synthesis method
4
method ultrasound
4
ultrasound assistance
4
assistance decoration
4

Similar Publications

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.

Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.

View Article and Find Full Text PDF

Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.

View Article and Find Full Text PDF

Background: The lesser grain borer, Rhyzopertha dominica, is a serious stored-products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!