A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding the interaction between α-1-acid glycoprotein (AGP) and potential Cu/Zn metallo-drugs of benzimidazole derived organic motifs: A multi-spectroscopic and molecular docking study. | LitMetric

Drug-binding and interactions with plasma proteins strongly affect their efficiency of delivery, hence considered as a key factor in determining the overall pharmacological action. Alpha-1-acid glycoprotein (AGP), a second most abundant plasma protein in blood circulation, has unique drug binding ability and involved in the transportation of various compounds. Here, we have investigated the mechanism of interaction between AGP and potential Cu/Zn metallo-drugs of benzimidazole derived organic motifs (CuL and ZnL, where L is Schiff base ligand) by applying integrated spectroscopic, biophysical techniques and computational molecular docking analyses. We found that both the metallo-drugs (CuL and ZnL) were bound at the central cavity of AGP interacting with the residues of lobe I, lobe II as well as lobe III. The binding of metallo-drugs to AGP occurs in 1:1 M ratios. Hydrogen bonding, electrostatic and hydrophobic interactions played a significant role in stabilizing the AGP-metallo-drug complexes. Binding affinities of both the metallo-drugs towards AGP at 298 K were of the order of 10-10 M, corresponding to Gibbs free energy of stabilization of approximately -5.50 to -6.62 kcal mol. Furthermore, the spectroscopic investigation by circular dichroism and synchronous fluorescence analyses suggest conformational changes in AGP upon the binding of metallic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2019.117457DOI Listing

Publication Analysis

Top Keywords

glycoprotein agp
8
agp potential
8
potential cu/zn
8
cu/zn metallo-drugs
8
metallo-drugs benzimidazole
8
benzimidazole derived
8
derived organic
8
organic motifs
8
molecular docking
8
cul znl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!