Background: Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is imprecise.

Methods: The relationship between Nrf2 and renal interstitial fibrosis was investigated using the unilateral ureteral obstruction (UUO) model of Nrf2 mice. The mice were separated into four groups, based on the treatment and intervention: Nrf2 + UUO, Nrf2 + Sham, WT + UUO and WT + Sham. Histological examination of renal tissue following the hematoxylin-eosin and Masson staining was carried out, as well as immunohistochemical staining. Additionally, to confirm the in vivo discoveries, in vitro experiments with HK-2 cells were also performed.

Results: The Nrf2 + UUO group showed more severe renal interstitial fibrosis compared to the WT + UUO, Nrf2 + Sham and WT + Sham groups. Furthermore, the manifestations of α-SMA and Fibronectin significantly increased, and the manifestation of E-cadherin considerably decreased in kidney tissues from the group of Nrf2 + UUO, compared to the WT + UUO group. The Nrf2 protein level significantly decreased in HK-2 cells, in reaction to the TGF-β1 concentration. In addition, the overexpression of Nrf2 presented contradictory results. What is more, the PI3K/Akt signaling pathway was discovered to be activated in the proteins extracted from cultured cells, and treated with Nrf2 siRNA and kidney tissues from the Nrf2 + UUO group.

Conclusions: The results we obtained demonstrate that Nrf2 signaling pathway may perhaps offset the development of EMT, prompted by TGF-β1 and renal interstitial fibrosis. Likewise, the anti-fibrotic effect of Nrf2 was imparted by the inactivation of PI3K/Akt signaling. From our discoveries, we deliver new insight related to the prevention and treatment of kidney fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexmp.2019.104296DOI Listing

Publication Analysis

Top Keywords

renal interstitial
20
interstitial fibrosis
20
pi3k/akt signaling
12
nrf2
10
nrf2 signaling
8
signaling pathways
8
hk-2 cells
8
compared wt + uuo
8
kidney tissues
8
signaling pathway
8

Similar Publications

Background: Chronic kidney disease (CKD) causes progressive and irreversible damage to the kidneys. Renal biopsies are essential for diagnosing the etiology and prognosis of CKD, while accurate quantification of tubulo-interstitial injuries from whole slide images (WSIs) of renal biopsy specimens is challenging with visual inspection alone.

Methods: We develop a deep learning-based method named DLRS to quantify interstitial fibrosis and inflammatory cell infiltration as tubulo-interstitial injury scores, from WSIs of renal biopsy specimens.

View Article and Find Full Text PDF

A preclinical study on effect of betanin on sodium fluoride induced hepatorenal toxicity in wistar rats.

J Complement Integr Med

January 2025

Department of Basic Medical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Article Synopsis
  • Excessive fluoride exposure can cause oxidative stress and damage metabolic organs, leading to toxicity in the liver and kidneys.
  • A study was conducted on Wistar rats divided into four groups, with some receiving sodium fluoride alone and others receiving fluoride with different doses of betanin from beetroot for 90 days.
  • Results showed that betanin treatment reduced markers of liver and kidney damage and improved oxidative stress indicators, suggesting it could potentially protect against fluoride-induced organ toxicity.
View Article and Find Full Text PDF

Snakebite is a neglected public health problem in tropical countries. Snakebite envenomation-associated acute kidney injury (SBE-AKI) is a major complication accounting for significant morbidity and mortality. The pathogenesis of SBE-AKI may be multifactorial, including prerenal AKI secondary to hemodynamic alterations, intrinsic renal injury, immune-related mechanisms, venom-induced consumptive coagulopathy and capillary leak syndrome.

View Article and Find Full Text PDF

Introduction: Chronic kidney disease (CKD) and heart failure with preserved ejection fraction (HFpEF) are more prevalent in the elderly. There is a lack of large animal models that allow the study of the impact of age on CKD and HFpEF in a translational fashion. This manuscript reports the first large preclinical model of CKD-HFpEF and metabolic derangements in naturally aged swine.

View Article and Find Full Text PDF

Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!