The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T T S S is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.14378DOI Listing

Publication Analysis

Top Keywords

mrpc activity
12
crp/fnr homolog
8
mrpc
8
myxococcus xanthus
8
xanthus developmental
8
long-standing model
8
dna binding
8
ttss motif
8
amino-terminal threonine/serine
4
threonine/serine motif
4

Similar Publications

Upon starvation, rod-shaped Myxococcus xanthus bacteria form mounds and then differentiate into round, stress-resistant spores. Little is known about the regulation of late-acting operons important for spore formation. C-signaling has been proposed to activate FruA, which binds DNA cooperatively with MrpC to stimulate transcription of developmental genes.

View Article and Find Full Text PDF

Myxococcus xanthus has a nutrient-regulated biphasic life cycle forming predatory swarms in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. The second messenger 3'-5', 3'-5 cyclic di-GMP (c-di-GMP) is essential during both stages of the life cycle; however, different enzymes involved in c-di-GMP synthesis and degradation as well as several c-di-GMP receptors are important during distinct life cycle stages. To address this stage specificity, we determined transcript levels using transcriptome sequencing (RNA-seq) and transcription start sites using Cappable sequencing (Cappable-seq) during growth and development genome wide.

View Article and Find Full Text PDF

Spatial differentiation of road safety in Europe based on NUTS-2 regions.

Accid Anal Prev

February 2021

Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155, Cracow, Poland. Electronic address:

Road safety varies significantly across the regions in Europe. To understand the factors behind this differentiation and the effects they have, data covering 263 NUTS-2 (Nomenclature of Territorial Units for Statistics) regions across Europe (European Union and Norway) have been analysed. The assessment was made using Geographically Weighted Regression (GWR).

View Article and Find Full Text PDF

The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus.

View Article and Find Full Text PDF

Upon starvation Myxococcus xanthus undergoes multicellular development. Rod-shaped cells move into mounds in which some cells differentiate into spores. Cells begin committing to sporulation at 24-30 h poststarvation, but the mechanisms governing commitment are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!