The di-copper center Cu is an essential metal cofactor in cytochrome oxidase (Cox) of mitochondria and many prokaryotes, mediating one-electron transfer from cytochrome c to the site for oxygen reduction. Cu is located in subunit II (CoxB) of Cox and protrudes into the periplasm of Gram-negative bacteria or the mitochondrial intermembrane space. How the two copper ions are brought together to build CoxB·Cu is the subject of this review. It had been known that the reductase TlpA and the metallochaperones ScoI and PcuC are required for Cu formation in bacteria, but the mechanism of copper transfer has emerged only recently for the Bradyrhizobium diazoefficiens system. It consists of the following steps: (a) TlpA keeps the active site cysteine pair of CoxB in its dithiol state as a prerequisite for metal insertion; (b) ScoI·Cu rapidly forms a transient complex with apo-CoxB; (c) PcuC, loaded with Cu and Cu , dissociates this complex to CoxB·Cu , and a second PcuC·Cu ·Cu transfers Cu to CoxB·Cu , yielding mature CoxB·Cu . Variants of this pathway might exist in other bacteria or mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.13587DOI Listing

Publication Analysis

Top Keywords

cytochrome oxidase
8
biochemical pathway
4
pathway biosynthesis
4
biosynthesis center
4
center bacterial
4
bacterial cytochrome
4
oxidase di-copper
4
di-copper center
4
center essential
4
essential metal
4

Similar Publications

Massive subcutaneous filariosis by in beech marten () in Italy.

Parasite Epidemiol Control

February 2025

Veterinary Medicine and Animal Production Department, Naples University, 8 Via Mezzocannone, 80138 Naples, Italy.

The beech marten () is a small-size mustelid endangered according to the IUCN Red List. Despite the plethora of parasites potentially affecting its population decline, subcutaneous filarioids are occasionally reported in martens and their competent arthropod vectors are to date unknown. Therefore, from January 2023 to August 2024, this study investigated the presence of subcutaneous filarioids and ectoparasites of road-killed beech martens ( = 7) from southwestern Italy.

View Article and Find Full Text PDF

The Asian Arowana, (Müller and Schlegel, 1844) is a large majestic freshwater teleost, crowned as the king of aquariums with its bright charismatic appearance and magnificent swimming performance. The most expensive Asian arowana is the Golden Blue-based Malayan Arowana which is endemic to the Bukit Merah Lake and Kerian River Basin, Perak, Malaysia. has been listed as endangered by the IUCN (International Union for Conservation of Nature), regulated under Appendix 1 of the Convention of International Trade on Endangered Species (CITES) for commercial trade.

View Article and Find Full Text PDF

Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.

View Article and Find Full Text PDF

Frost damage to apple flowers significantly affects both the quality and yield of apples, potentially leading to substantial economic losses. This study investigates the application of the environmentally friendly plant hormone 24-epibrassinolide (EBR) on apple flowers to assess its effects under frost stress conditions. The findings indicate that exogenous EBR treatment maintained favorable flower morphology, mitigated pistil browning, and reduced ion leakage.

View Article and Find Full Text PDF

Myiasis is a parasitic infestation of soft vertebrate tissues by larval stages of Diptera. We briefly described the lesion-causing genus Cordylobia Grünberg (Diptera: Calliphoridae). Three Polish travelers to Uganda, Gambia, and Senegal returned with furuncular myiasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!