Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hereditary spastic paraplegias (HSP) represents a group of orphan neurodegenerative diseases with gait disturbance as the predominant clinical feature. Due to its rarity, research within this field is still limited. Aside from clinical analysis using established scales, gait analysis has been employed to enhance the understanding of the mechanisms behind the disease. However, state of the art gait analysis systems are often large, immobile and expensive. To overcome these limitations, this paper presents the first clinically relevant mobile gait analysis system for HSP patients. We propose an unsupervised model based on local cyclicity estimation and hierarchical hidden Markov models (LCE-hHMM). The system provides stride time, swing time, stance time, swing duration and cadence. These parameters are validated against a GAITRite system and manual sensor data labelling using a total of 24 patients within 2 separate studies. The proposed system achieves a stride time error of -0.00 ± 0.09 s (correlation coefficient, r = 1.00) and a swing duration error of -0.67 ± 3.27 % (correlation coefficient, r = 0.93) with respect to the GAITRite system. We show that these parameters are also correlated to the clinical spastic paraplegia rating scale (SPRS) in a similar manner to other state of the art gait analysis systems, as well as to supervised and general versions of the proposed model. Finally, we show a proof of concept for this system to be used to analyse alterations in the gait of individual patients. Thus, with further clinical studies, due to its automated approach and mobility, this system could be used to determine treatment effects in future clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2019.2937574 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!