A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tensor Networks for Latent Variable Analysis: Higher Order Canonical Polyadic Decomposition. | LitMetric

The canonical polyadic decomposition (CPD) is a convenient and intuitive tool for tensor factorization; however, for higher order tensors, it often exhibits high computational cost and permutation of tensor entries, and these undesirable effects grow exponentially with the tensor order. Prior compression of tensor in-hand can reduce the computational cost of CPD, but this is only applicable when the rank R of the decomposition does not exceed the tensor dimensions. To resolve these issues, we present a novel method for CPD of higher order tensors, which rests upon a simple tensor network of representative inter-connected core tensors of orders not higher than 3. For rigor, we develop an exact conversion scheme from the core tensors to the factor matrices in CPD and an iterative algorithm of low complexity to estimate these factor matrices for the inexact case. Comprehensive simulations over a variety of scenarios support the proposed approach.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2019.2929063DOI Listing

Publication Analysis

Top Keywords

higher order
12
canonical polyadic
8
polyadic decomposition
8
order tensors
8
computational cost
8
core tensors
8
factor matrices
8
tensor
7
tensor networks
4
networks latent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!