Efficient electrocatalysts are required in order for electrocatalysis to play a large role in a future largely based on renewable energy sources. To rationally design these catalysts we need to understand the fundamental origin of their activities. In order to elucidate the relationship between catalyst structure and electrochemical behaviour, we investigate well-defined single-crystal catalysts in a UHV chamber interfaced with an electrochemical setup. Using the capabilities of UHV based methods, we can prepare more complex surface structures than it is possible with traditional EC methods and investigate their electrochemical behaviour. We exemplify this by showing results from both clean and intentionally structured Pt(111), Cu(111) and Pt/Cu(111).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201900588 | DOI Listing |
Molecules
January 2025
Department of Physical Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria.
The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Chair of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
With hydrogen being a promising candidate for many future and current energy applications, there is a need for material-testing solutions, which can represent hydrogen charging under superimposed mechanical loading. Usage of high purity gaseous hydrogen under high pressure in commercial solutions entails huge costs and also potential safety concerns. Therefore, a setup was developed utilizing a customized electrochemical charging cell built into a dynamic testing system.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
The transformation of bulk transition-metal dichalcogenide (TMD) particles into ultrathin nanosheets with both an acceptable yield and preserved crystalline integrity presents a substantial challenge in electrochemical exfoliation. This challenge arises from the continuous potential stress that the materials experience in traditional exfoliation setups. Herein, we propose a new fluidized electrochemical exfoliation (FEE) method to efficiently transform TMD powders into high-quality, few-layered TMD nanosheets in the aqueous phase.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Physics, RPS Degree College, Balana, Mahendergarh, Haryana 123029, India.
The present work reports a clear and improved hydrothermal methodology for the synthesis of MoSe nanoflowers (MNFs) at 210 °C. To observe the effect of temperature on the fascinating properties, the process temperature was modified by ±10 °C. The as-prepared MNFs were found to consist of 2D nanosheets, which assembled into a 3D flower-like hierarchical morphology van der Waals forces.
View Article and Find Full Text PDFHeliyon
January 2025
Sharif Institute of Energy, Water and Environment, Sharif University of Technology, Azadi Avenue, P.O.Box11365-9465, Tehran, Iran.
Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!