The mucosal pellicle, also called salivary pellicle, is a thin biological layer made of salivary and epithelial constituents, lining oral mucosae. It contributes to their protection against microbiological, chemical, or mechanical insults. Pellicle formation depends on the cells' surface properties, and in turn the pellicle deeply modifies such properties. It has been reported that the expression of the transmembrane mucin MUC1 in oral epithelial cells improves the formation of the mucosal pellicle. Here, we describe an approach combining classical and functionalized tip atomic force microscopy and scanning microwave microscopy to characterize how MUC1 induces changes in buccal cells' morphology, hydrophobicity, and electric properties to elucidate the physicochemical mechanisms involved in the enhancement of the anchoring of salivary proteins. We show that MUC1 expression did not modify drastically the morphology of the epithelial cells' surface. MUC1 expression, however, resulted in the presence of more hydrophobic and more charged areas at the cell surface. The presence of salivary proteins decreased the highest attractive and repulsive forces recorded between the cell surface and a functionalized hydrophobic atomic force microscopy (AFM) tip, suggesting that the most hydrophobic and charged areas participate in the binding of salivary proteins. The cells' dielectric properties were altered by both MUC1 expression and the presence of a mucosal pellicle. We finally show that in the absence of MUC1, the pellicle appeared as a distinct layer poorly interacting with the cells' surface. This integrative AFM/scanning microwave microscopy approach may usefully describe the surface properties of various cell types, with relevance to the bioadhesion or biomimetics fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b01979DOI Listing

Publication Analysis

Top Keywords

surface properties
12
mucosal pellicle
12
cells' surface
12
salivary proteins
12
muc1 expression
12
atomic force
8
force microscopy
8
microwave microscopy
8
expression presence
8
hydrophobic charged
8

Similar Publications

Because of their uniform and regular channels, adjustable pore size, large surface area, controllable wall composition, high hydrothermal stability, ease of functional modification, and good accessibility of larger reactant molecules, mesoporous siliceous SBA-15 is of excellent catalyst carrier that is highly versatile and has been used extensively to prepare a variety of supported catalysts with ideal catalytic properties. In this study, we report the synthesis, characterization, and catalytic application of Cu-Ag/ SBA-15 nanoalloy catalysts towards the control of microorganisms in drinking water has been reported. The Cu-Ag/SBA-15 nanoalloy catalysts with different molar mass ratio of copper to silver (Cu:Ag = 1: 0, 0.

View Article and Find Full Text PDF

Modulation of electronic spin states in cobalt-based catalysts is an effective strategy for molecule activations. Crystalline-amorphous interfaces often exhibit unique catalytic properties due to disruptions of long-range order and alterations in electronic structure. However, the mechanisms of molecule activation and spin states at interfaces remain elusive.

View Article and Find Full Text PDF

Additive-free 3D-printed nanostructured carboxymethyl cellulose aerogels.

Int J Biol Macromol

January 2025

Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France. Electronic address:

3D printing of polysaccharide solutions is widely recognized as a highly promising method in the biomedical field for achieving complex customized shapes. One of the main challenges is in selecting conditions, in particular, the rheological properties of the system, to retain the printed shape. For the first time, the direct ink writing (DIW) is successfully applied to neat carboxymethyl cellulose (CMC) solutions without any additives or crosslinking, only by adjusting solutions' rheological properties.

View Article and Find Full Text PDF

The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions.

View Article and Find Full Text PDF

A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!