The eggshell membrane is one of the easily obtainable natural biomaterials, but has been neglected in the biomaterial community, compared with marine biomaterials and discarded as a food waste. In this work, we utilized the ESM hydrolysate (ESMH), which was obtained by the enzymochemical method, as a bioactive functional material for interfacial bioengineering, exemplified by thickness-tunable, layer-by-layer (LbL) nanocoating with the Fe(III)-tannic acid (TA) complex. [Fe(III)-TA/ESMH] LbL films, ending with the ESMH layer, showed great cytocompatiblility with HeLa cells and even primary hippocampal neuron cells. More importantly, the films were found to be neurochemically active, inducing the acceleration of neurite outgrowth for the long-term neuron culture. We believe that the ability for building cytocompatible ESMH films in a thickness-tunable manner would be applicable to a broad range of different nanomaterials in shape and size and would be utilized with multimodal functionalities for biomedical applications, such as bioencapsulation, theranostics, and regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b02055DOI Listing

Publication Analysis

Top Keywords

eggshell membrane
8
neurite outgrowth
8
thickness-tunable eggshell
4
membrane hydrolysate
4
hydrolysate nanocoating
4
nanocoating enhanced
4
enhanced cytocompatibility
4
cytocompatibility neurite
4
outgrowth eggshell
4
membrane easily
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!