The average conformation of the methyl-branched chains of archaeal lipid phosphatidyl glycerophosphate methyl ester (PGP-Me) was examined in a hydrated bilayer membrane based on the H nuclear magnetic resonance (NMR) of enantioselectively H-labeled compounds that were totally synthesized for the first time in this study. The NMR results in combination with molecular dynamics simulations revealed that the PGP-Me chain appeared to exhibit behavior different from that of typical membrane lipids such as dimyristoylphosphatidylcholine (DMPC). The C-C bonds of the PGP-Me chain adopt alternative parallel and tilted orientations to the membrane normal as opposed to a DMPC chain where all of the C-C bonds tilt in the same way on average. This characteristic orientation causes the intertwining of PGP-Me chains, which plays an important role in the excellent thermal and high-salinity stabilities of archaeal lipid bilayers and membrane proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.9b00469 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!