Mixed transition metal oxides (MTMOs) have enormous potential applications in energy and environment. Their use as catalysts for the treatment of environmental pollution requires further enhancement in activity and stability. This work presents a new synthesis approach that is both convenient and effective in preparing binary metal oxide catalysts (CeCuO ) with excellent activity by achieving molecular-level mixing to promote aliovalent substitution. It also allows a single, pure MTMO to be prepared for enhanced stability under reaction by using a bimetallic metal-organic framework (MOF) as the catalyst precursor. This approach also enables the direct manipulation of the shape and form of the MTMO catalyst by controlling the crystallization and growth of the MOF precursor. A 2D CeCuO catalyst is investigated for the oxidation reactions of methanol, acetone, toluene, and o-xylene. The catalyst can catalyze the complete reactions of these molecules into CO at temperatures below 200 °C, representing a significant improvement in performance. Furthermore, the catalyst can tolerate high moisture content without deactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201903525DOI Listing

Publication Analysis

Top Keywords

catalyst
5
novel approach
4
approach high-performance
4
high-performance aliovalent-substituted
4
aliovalent-substituted catalysts-2d
4
catalysts-2d bimetallic
4
bimetallic mof-derived
4
mof-derived cecuo
4
cecuo microsheets
4
microsheets mixed
4

Similar Publications

Direct conversion of CO with renewable H to produce methanol provides a promising way for CO utilization and H storage. Cu/ZnO catalysts are active, but their activities depend on the preparation methods. Here, we reported a facile mechanical grinding method for the fast synthesis of Cu@zeolitic imidazolate framework-8 (ZIF-8) derived Cu/ZnO catalysts applied in CO hydrogenation to methanol.

View Article and Find Full Text PDF

The second 3d-transition metal incorporation in Ni-(oxy)hydroxide has a drastic effect on alkaline OER and alcohol dehydrogenation reactivity. While Mn incorporation suppresses the alkaline OER, it greatly improves the alcohol dehydrogenation reactivity. A complete reversal of reactivity is obtained when Fe is incorporated, which shows better performance for alkaline OER with poor alcohol dehydrogenation reactivity.

View Article and Find Full Text PDF

This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO2) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = C5Me5-) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR2)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO2. Control experiments underscore the critical nature of borane incorporation for CO2 to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H]).

View Article and Find Full Text PDF

Symmetry Breaking of FeN4 Moiety via Edge Defects for Acidic Oxygen Reduction Reaction.

Angew Chem Int Ed Engl

January 2025

University of Science and Technology of China, National Synchrotron Radiation Laboratory, 42#, South Road of HeZuoHua, 230029, Hefei, CHINA.

Fe-N-C catalysts, with a planar D4h symmetric FeN4 structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe-N-C catalysts through morphology engineering, enabling the precise modulation of the FeN4 active site.

View Article and Find Full Text PDF

Herein, we report a Lewis acid-mediated ring expansion of donor-acceptor cyclopropanes (DACs) to substituted azetidines via nucleophilic nitrogen group transfer from readily accessible iminoiodinane. This protocol operates under mild, transition-metal-free conditions, and showcases excellent chemoselectivity, along with broad functional group tolerance. We report for the first time that challenging alkyl donor-acceptor cyclopropanes can undergo ring expansion leading to aliphatic azetidines without relying on external oxidants or precious transition-metal catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!