Species that belong to section are commonly found in various terrestrial environments, but only a few have been reported in marine environments. Because the number of species reported in marine environments is increasing, we investigated the diversity of section in marine environments in Korea. Based on sequence analyses of β-tubulin and calmodulin loci, 21 strains of section were identified as , , , , cf. , , , and . Three of them were confirmed as new to Korea: , , and . Here, we have provided detailed morphological descriptions of these unrecorded species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691904 | PMC |
http://dx.doi.org/10.1080/12298093.2019.1601330 | DOI Listing |
Environ Microbiome
January 2025
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:
Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.
View Article and Find Full Text PDFEnviron Res
January 2025
Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Biofouling is a common phenomenon caused by waterborne organisms such as bacteria, diatoms, mussels, barnacles, algae, etc., accumulating on the surfaces of engineering structures submerged under water. This leads to corrosion of such surfaces and decreases their moving efficiency.
View Article and Find Full Text PDFEnviron Res
January 2025
ISPRA, Italian National Institute for Environmental Protection and Research, Laboratory of Nekton Ecology, Via del Fosso di Fiorano 64, 00143, Rome, RM, Italy.
Implementing biomonitoring programs for assessing the impact of microplastic ingestion on marine organisms is a priority to verify the effectiveness of measures adopted by legislative frameworks to deal with plastic pollution. At the European level, the Marine Strategy Framework Directive mandates Member States to establish a unified monitoring approach. However, due to the vast range and differences in marine regions, the selection of bioindicators must be tailored locally.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Navigation and Shipping, Shandong Jiaotong University, Weihai, 264200, Shandong, China.
The laser-induced fluorescence technique has the advantage of fast and non-destructive detection and can be used to classify types of marine microplastics. However, spectral overlap poses a challenge for qualitative and quantitative analysis by conventional fluorescence spectroscopy. In this paper, a 405 nm excitation laser source was used to irradiate 4 types of microplastic samples with different concentrations, and a total of 1600 sets of fluorescence spectral data were obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!