The authors have analyzed the possibility to use transplantation of the pancreatic islet cell cultures of pig embryos as a method of preoperative preparing patients with type II diabetes mellitus having pyo-surgical diseases.
Download full-text PDF |
Source |
---|
Front Endocrinol (Lausanne)
December 2024
Department of Psychology, University of Miami, Coral Gables, FL, United States.
The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.
View Article and Find Full Text PDFβ-cell dysfunction in pancreatic islets, characterized as either the loss of β-cell mass or the resistance of β-cell to glucose, is the leading cause of progression to diabetes. Islet transplantation became a promising approach to replenish functional β-cell mass. However, not much known about changes in islets used for transplantation after isolation.
View Article and Find Full Text PDFDiabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion.
View Article and Find Full Text PDFHuman endocrine cell differentiation and islet morphogenesis play critical roles in determining islet cell mass and function, but the events and timeline of these processes are incompletely defined. To better understand early human islet cell development and maturation, we collected 115 pediatric pancreata and mapped morphological and spatiotemporal changes from birth through the first ten years of life. Using quantitative analyses and a combination of complementary tissue imaging approaches, including confocal microscopy and whole-slide imaging, we developed an integrated model for endocrine cell formation and islet architecture, including endocrine cell type heterogeneity and abundance, endocrine cell proliferation, and islet vascularization and innervation.
View Article and Find Full Text PDFIntroduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!