The contribution of different brain areas to internally guided (IG) and externally triggered (ET) movements has been a topic of debate. It has been hypothesized that IG movements are performed mainly through the basal ganglia-thalamocortical loop while ET movements are through the cerebello-thalamocortical pathway. We hypothesized that basal ganglia activity would be modified in patients with Parkinson's disease during IG movement as compared with normal subjects. We used functional MRI (fMRI) to investigate the differences between IG and ET motor tasks. Twenty healthy participants and 20 Parkinson's disease patients (OFF-state) were asked to perform hand movements in response to sound stimuli (ET) and in advance of the stimuli (IG). We showed that ET movements evoked activation of a few large clusters in the contralateral motor areas: the sensorimotor and premotor cortex, supplementary motor area (SMA), insula, putamen, motor thalamus and ipsilateral cerebellum. IG movements additionally evoked activation of a large number of small clusters distributed in different brain areas including the parietal and frontal lobes. Comparison between the activity of Parkinson's disease patients and healthy volunteers showed few important differences. We observed that along with the activity of the posterior areas, an activation of the anterior areas of putamen was observed during IG movements. We also found hyperactivity of the ventral thalamus for both movements. These results showed that IG movements in PD patients were made with the involvement of both sensorimotor and associative basal ganglia-thalamocortical loops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692433PMC
http://dx.doi.org/10.3389/fneur.2019.00847DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
16
movements
10
basal ganglia
8
patients parkinson's
8
internally guided
8
brain areas
8
basal ganglia-thalamocortical
8
disease patients
8
evoked activation
8
activation large
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Fundacion Neuropolis, Zaragoza, Zaragoza, Spain.

Background: The therapeutic management of dementia with Lewy bodies (LBD) is a challenge given the high sensitivity to drugs in this disease. This is particularly sensitive with regard to the management of parkinsonism. In particular, treatment of motor symptoms with levodopa or dopaminergic agonists poses a risk of worsening cognitive and behavioral symptoms.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.

Background: Glucagon-like peptide 1 (GLP-1) is a peptide hormone that plays several physiological roles in treating diabetes and in protecting the brain. Recent clinical trials testing 4 different GLP-1 class drugs in phase 2 trials showed a clear correlation between neuroprotection and the ability to cross the BBB. Exenatide and Lixisenatide both showed excellent protective effects in patients Parkinson's disease (PD) and both drugs can readily cross the BBB.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.

Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

MRC Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, United Kingdom.

Background: Accumulation of misfolded a-synuclein protein in intracellular inclusion bodies of dopaminergic neurons underlies the pathogenesis of synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). Therefore, clearance of misfolded α-synuclein from dopaminergic neurons could in principle offer a an approach for modifying synucleinopathies, which currently remain untreatable.

Method: In this study, we employ the Affinity-directed PROtein Missile (AdPROM) system consisting of the substrate receptor of the CUL2-E3 ligase complex VHL and a nanobody selectively recognising the human α-synuclein protein RESULT: We demonstrate targeted degradation of endogenous α-synuclein from human cell lines with exquisite selectivity.

View Article and Find Full Text PDF

Background: Epidemiological studies report an elevated risk of neurodegenerative disorders, particularly Parkinson's disease (PD), in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed incretin mimetics or dipeptidyl peptidase 4 inhibitors (DPP-4Is). Incretin mimetic repurposing appears promising in human PD and Alzheimer's disease (AD) clinical trials. DPP-4Is are yet to be evaluated in PD or AD human studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!