In this paper, tapered vs. uniform tube-load models are comparatively investigated as mathematical representation for blood pressure (BP) wave propagation in human aorta. The relationship between the aortic inlet and outlet BP waves was formulated based on the exponentially tapered and uniform tube-load models. Then, the validity of the two tube-load models was comparatively investigated by fitting them to the experimental aortic and femoral BP waveform signals collected from 13 coronary artery bypass graft surgery patients. The two tube-load models showed comparable goodness of fit: (i) the root-mean-squared error (RMSE) was 3.3+/-1.1 mmHg in the tapered tube-load model and 3.4+/-1.1 mmHg in the uniform tube-load model; and (ii) the correlation was = 0.98+/-0.02 in the tapered tube-load model and = 0.98+/-0.01 mmHg in the uniform tube-load model. They also exhibited frequency responses comparable to the non-parametric frequency response derived from the aortic and femoral BP waveforms in most patients. Hence, the uniform tube-load model was superior to its tapered counterpart in terms of the Akaike Information Criterion (AIC). In general, the tapered tube-load model yielded the degree of tapering smaller than what is physiologically relevant: the aortic inlet-outlet radius ratio was estimated as 1.5 on the average, which was smaller than the anatomically plausible typical radius ratio of 3.5 between the ascending aorta and femoral artery. When the tapering ratio was restricted to the vicinity of the anatomically plausible typical value, the exponentially tapered tube-load model tended to underperform the uniform tube-load model (RMSE: 3.9+/-1.1 mmHg; = 0.97+/-0.02). It was concluded that the uniform tube-load model may be more robust and thus preferred as the representation for BP wave propagation in human aorta; compared to the uniform tube-load model, the exponentially tapered tube-load model may not provide valid physiological insight on the aortic tapering, and its efficacy on the goodness of fit may be only marginal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691050 | PMC |
http://dx.doi.org/10.3389/fphys.2019.00974 | DOI Listing |
Eur Radiol Exp
January 2025
Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
NPJ Digit Med
October 2024
Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
We investigated the potential of the transmission line model as a digital twin of aneurysmal aorta by comparatively analyzing how a uniform lossless tube-load model were fitted to the carotid and femoral artery tonometry waveforms pertaining to (i) 79 abdominal aortic aneurysm (AAA) patients vs their matched controls (CON) and (ii) 35 AAA patients before vs after endovascular aneurysm repair (EVAR). The uniform lossless tube-load model fitted the tonometry waveforms pertaining to AAA as well as CON and EVAR. In addition, the parameters in the tube-load model exhibited physiologically explainable changes: when normalized, both pulse transit time and reflection coefficient increased with AAA and decreased after EVAR, which can be explained by the increase in arterial compliance and the decrease in arterial inertance due to the aortic expansion associated with AAA.
View Article and Find Full Text PDFRadiography (Lond)
October 2024
Department of Biomedical Engineering and Health Systems (MTH), KTH Royal Institute of Technology, Stockholm, Sweden. Electronic address:
Introduction: Low contrast resolution in abdominal computed tomography (CT) may be negatively affected by attempts to lower patient doses. Iterative reconstruction (IR) algorithms play a key role in mitigating this problem. The reconstructed slice thickness also influences image quality.
View Article and Find Full Text PDFRadiat Prot Dosimetry
April 2024
Department of Biomedical Engineering and Health Systems (MTH), KTH Royal Institute of Technology, SE-141 57 Stockholm, Sweden.
Non-linear properties of iterative reconstruction (IR) algorithms can alter image texture. We evaluated the effect of a model-based IR algorithm (advanced modelled iterative reconstruction; ADMIRE) and dose on computed tomography thorax image quality. Dual-source scanner data were acquired at 20, 45 and 65 reference mAs in 20 patients.
View Article and Find Full Text PDFComput Biol Med
March 2023
College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, Liaoning, China; Neusoft Research of Intelligent Healthcare Technology, Co. Ltd, Shenyang, 110169, Liaoning, China. Electronic address:
Background And Objective: The aortic pressure waveform (APW) provides reliable information for the diagnosis of cardiovascular disease. APW is often measured using a generalized transfer function (GTF) applied to the peripheral pressure waveform acquired noninvasively, to avoid the significant risks of invasive APW acquisition. However, the GTF ignores various physiological conditions, which affects the accuracy of the estimated APW.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!