Patients who survive brain injuries may develop Disorders of Consciousness (DOC) such as Coma, Vegetative State (VS) or Minimally Conscious State (MCS). Unfortunately, the rate of misdiagnosis between VS and MCS due to clinical judgment is high. Therefore, diagnostic decision support systems aiming to correct any differentiation between VS and MCS are essential for the characterization of an adequate treatment and an effective prognosis. In recent decades, there has been a growing interest in the new EEG computational techniques. We have reviewed how resting-state EEG is computationally analyzed to support differential diagnosis between VS and MCS in view of applicability of these methods in clinical practice. The studies available so far have used different techniques and analyses; it is therefore hard to draw general conclusions. Studies using a discriminant analysis with a combination of various factors and reporting a cut-off are among the most interesting ones for a future clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691089PMC
http://dx.doi.org/10.3389/fnins.2019.00807DOI Listing

Publication Analysis

Top Keywords

resting-state eeg
8
disorders consciousness
8
computational methods
4
methods resting-state
4
eeg patients
4
patients disorders
4
consciousness patients
4
patients survive
4
survive brain
4
brain injuries
4

Similar Publications

Background: Neural activity and subjective experiences indicate that breath-awareness practices, which focus on mindful observation of breath, promote tranquil calm and thoughtless awareness.

Purpose: This study explores the impact of tristage Ānāpānasati-based breath meditation on electroencephalography (EEG) oscillations and self-reported mindfulness states in novice meditators following a period of effortful cognition.

Methods: Eighty-nine novice meditators (82 males; Mean Age = 24.

View Article and Find Full Text PDF

Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes.

View Article and Find Full Text PDF

The relationship between behavioral inhibition and resting electroencephalography: A neuroelectrophysiological study.

Int J Psychophysiol

January 2025

Department of Applied Psychology, College of Public Administration, Guangdong University of Foreign Studies, Guangzhou, China. Electronic address:

Investigating the neurophysiological indicators of behavioral inhibition is crucial; however, despite numerous studies on the relationship between behavioral inhibition and resting-state electroencephalography (rs-EEG), the findings have yielded inconsistent results. Furthermore, these investigations primarily focused on reactive inhibition while neglecting intentional inhibition. Therefore, this study aimed to reassess the correlation between reactive inhibition and rs-EEG metrics while also exploring the association between intentional inhibition and rs-EEG.

View Article and Find Full Text PDF

Purpose: Behavioral and neurobiological abnormalities in addiction and obesity have led to the theory of food addiction in obesity (FAOB) and brain-behavior association studies. Transcranial magnetic stimulation (TMS) studies and treats various brain disorders. Cortico-cortical paired associative stimulation TMS protocol, in which left lateral prefrontal cortex (LPFC) stimulation follows right LPFC stimulation, can reduce emotional reactivity to visual triggers and modulate prefrontal asymmetry in healthy adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!