A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. | LitMetric

Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic.

Waste Manag

School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.

Published: September 2019

Plastics are an indispensable material but also a major environmental pollutant. In contrast, biodegradable polymers have the potential to be compostable. The biodegradation of four polymers as discs, polycaprolactone (PCL), polyhydroxybutyrate (PHB), polylactic acid (PLA) and poly(1,4 butylene) succinate (PBS) was compared in soil and compost over a period of more than 10 months at 25 °C, 37 °C and 50 °C. Degradation rates varied between the polymers and incubation temperatures but PCL showed the fastest degradation rate under all conditions and was completely degraded when buried in compost and incubated at 50 °C after 91 days. Furthermore, PCL strips showed a significant reduction in tensile strength in just 2 weeks when incubated in compost >45 °C. Various fungal strains growing on the polymer surfaces were identified by sequence analysis. Aspergillus fumigatus was most commonly found at 25 °C and 37 °C, while Thermomyces lanuginosus, which was abundant at 50 °C, was associated with PCL degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.07.042DOI Listing

Publication Analysis

Top Keywords

biodegradable polymers
8
soil compost
8
25 °c 37 °c
8
microbial degradation
4
degradation biodegradable
4
polymers
4
polymers soil
4
compost
4
compost demonstrating
4
demonstrating polycaprolactone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!