Bacterial and archeal dynamics of a labscale HYBRID gas fermentation bioreactor fed with CO and H.

J Environ Sci Health A Tox Hazard Subst Environ Eng

Department of Biology, Faculty of Science, Ege University, Izmir , Turkey.

Published: January 2020

AI Article Synopsis

Article Abstract

16s rDNA-based methods were used in order to identify the dynamics of microbial profiles in a HYBRID gas fermentation bio-methanization reactor. The effects of various H and CO ratios on microbial community were investigated. The HYBRID gas fermentation reactor was composed of granular anaerobic seed and the system fed with only H and CO gases. No additional organic material and trace element was fed during the throughout the experiments; thus, the microbial diversity was directly related to production of methane. The dynamics of the microbial communities were investigated with DGGE and real-time PCR analysis. The results showed that members were more dominated than members in the system. DGGE results indicated that sp., , sp., and were the most prominent methanogens depending on different H/CO ratios. DGGE profiles suggested that hydrogenotrophic and acetoclastic species were responsible for the production of methane. The survival of syntrophic bacteria and acetoclastic methanogens was attributed to their utilization of organic materials provided by lysis. To the best of our knowledge, this is the first microbial profile detection study in a hybrid bioreactor system operated with only pure hydrogen and carbon dioxide.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2019.1649589DOI Listing

Publication Analysis

Top Keywords

hybrid gas
12
gas fermentation
12
dynamics microbial
8
production methane
8
microbial
5
bacterial archeal
4
archeal dynamics
4
dynamics labscale
4
hybrid
4
labscale hybrid
4

Similar Publications

Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.

View Article and Find Full Text PDF

Hydrogen is a zero-emissive fuel and has immense potential to replace carbon-emitting fuels in the future. The development of efficient H sensors is essential for preventing hazardous situations and facilitating the widespread usage of hydrogen. Chemiresistors are popular gas sensors owing to their attractive properties such as fast response, miniaturization, simple integration with electronics and low cost.

View Article and Find Full Text PDF

Improving crop salinity management requires enhanced understanding of salinity responses of leaf and fine-root traits governing resource acquisition, ideally in relation to ion accumulation at intra- or inter-specific levels. We hypothesized that these responses are coupled towards integrated resource conservation for plants under prolonged salt treatment. We tested the hypothesis with a glasshouse experiment on saplings of six contrasting hybrids, subjected to either control or salt treatment (reverse osmosis water versus 3.

View Article and Find Full Text PDF

Although oil extraction is indispensable for meeting worldwide energy demands and ensuring industrial sustainability, various hazards are observed. Therefore, this study examined the chemical oil recovery-related environmental consequences concerning water, soil, ecosystem, and human health damages. A numerical analysis explored the mathematical model for oil extraction from unconventional sources by utilising 3D porous prism geometries under high-temperature conditions.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!