We developed an artificial intelligence algorithm (AIA) for smartphones to determine the severity of facial acne using the GEA scale and to identify different types of acne lesion (comedonal, inflammatory) and postinflammatory hyperpigmentation (PIHP) or residual hyperpigmentation. Overall, 5972 images (face, right and left profiles) obtained with smartphones (IOS and/or Android) from 1072 acne patients were collected. Three trained dermatologists assessed the acne severity for each patient. One acne severity grade per patient (grade given by the majority of the three dermatologists from the two sets of three images) was used to train the algorithm. Acne lesion identification was performed from a subgroup of 348 images using a tagging tool; tagged images served to train the algorithm. The algorithm evolved and was adjusted for sensibility, specificity and correlation using new images. The correlation between the GEA grade and the quantification and qualification of acne lesions both by the AIA and the experts for each image were evaluated for all AIA versions. At final version 6, the GEA grading provided by AIA reached 68% and was similar to that provided by the dermatologists. Between version 4 and version 6, AIA improved precision results multiplied by 1.5 for inflammatory lesions, 2.5 for non-inflammatory lesions and by 2 for PIHP; recall was improved by 2.6, 1.6 and 2.7. The weighted average of precision and recall or F1 score was 84% for inflammatory lesions, 61% for non-inflammatory lesions and 72% for PIHP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972662 | PMC |
http://dx.doi.org/10.1111/exd.14022 | DOI Listing |
Biomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFPain
February 2025
Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Department of Science and Education, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China.
Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!