The neuropathologic basis of in vivo cortical atrophy in clinical dementia syndromes remains poorly understood. This includes primary progressive aphasia (PPA), a language-based dementia syndrome characterized by asymmetric cortical atrophy. The neurofibrillary tangles (NFTs) and amyloid-ß plaques (APs) of Alzheimer's disease (AD) can cause PPA, but a quantitative investigation of the relationships between NFTs, APs and in vivo cortical atrophy in PPA-AD is lacking. The present study measured cortical atrophy from corresponding bilateral regions in five PPA-AD participants with in vivo magnetic resonance imaging scans 7-30 months before death and acquired stereologic estimates of NFTs and dense-core APs visualized with the Thioflavin-S stain. Linear mixed models accounting for repeated measures and stratified by hemisphere and region (language vs. non-language) were used to determine the relationships between cortical atrophy and AD neuropathology and their regional selectivity. Consistent with the aphasic profile of PPA, left language regions displayed more cortical atrophy (P = 0.01) and NFT densities (P = 0.02) compared to right language homologues. Left language regions also showed more cortical atrophy (P < 0.01) and NFT densities (P = 0.02) than left non-language regions. A subset of data was analyzed to determine the predilection of AD neuropathology for neocortical regions compared to entorhinal cortex in the left hemisphere, which showed that the three most atrophied language regions had greater NFT (P = 0.04) and AP densities (P < 0.01) than the entorhinal cortex. These results provide quantitative evidence that NFT accumulation in PPA selectively targets the language network and may not follow the Braak staging of neurofibrillary degeneration characteristic of amnestic AD. Only NFT densities, not AP densities, were positively associated with cortical atrophy within left language regions (P < 0.01) and right language homologues (P < 0.01). Given previous findings from amnestic AD, the current study of PPA-AD provides converging evidence that NFTs are the principal determinants of atrophy and clinical phenotypes associated with AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039764PMC
http://dx.doi.org/10.1111/bpa.12783DOI Listing

Publication Analysis

Top Keywords

cortical atrophy
32
vivo cortical
12
neuropathologic basis
8
basis vivo
8
cortical
8
atrophy
8
alzheimer's disease
8
left language
8
language regions
8
vivo
4

Similar Publications

Introduction: Successful cognitive aging is related to both maintaining brain structure and avoiding Alzheimer's disease (AD) pathology, but how these factors interplay is unclear.

Methods: A total of 109 cognitively normal older adults (70+ years old) underwent amyloid beta (Aβ) and tau positron emission tomography (PET) imaging, structural magnetic resonance imaging (MRI), and cognitive testing. Cognitive aging was quantified using the cognitive age gap (CAG), subtracting chronological age from predicted cognitive age.

View Article and Find Full Text PDF

Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.

View Article and Find Full Text PDF

Impaired semantic control in the logopenic variant of primary progressive aphasia.

Brain Commun

December 2024

Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK.

We investigated semantic cognition in the logopenic variant of primary progressive aphasia, including (i) the status of verbal and non-verbal semantic performance; and (ii) whether the semantic deficit reflects impaired semantic control. Our hypothesis that individuals with logopenic variant of primary progressive aphasia would exhibit semantic control impairments was motivated by the anatomical overlap between the temporoparietal atrophy typically associated with logopenic variant of primary progressive aphasia and lesions associated with post-stroke semantic aphasia and Wernicke's aphasia, which cause heteromodal semantic control impairments. We addressed the presence, type (semantic representation and semantic control; verbal and non-verbal), and progression of semantic deficits in logopenic variant of primary progressive aphasia.

View Article and Find Full Text PDF

Background: Although previous studies have shown that cognitive decline in Alzheimer's disease (AD) is associated with various risk factors, they primarily focused on late-onset AD (LOAD).

Objective: We aim to evaluate the differential impact of risk factors on the cognitive decline between early-onset AD (EOAD, onset < 65 years) and LOAD (onset 65 years) and explore the longitudinal effect of Apolipoprotein E allele 4 ( ε4) on cortical atrophy in both cohorts.

Methods: Using data from 212 EOAD and 1101 LOAD participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI), we conducted multivariable mixed-effect models to evaluate the impact of ε4, education, hypertension, diabetes, dyslipidemia, and body mass index on cognitive performance.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!