Alzheimer's disease (AD) is accompanied by the dysfunction of intracellular protein homeostasis systems, in particular the ubiquitin-proteasome system (UPS). Beta-amyloid peptide (Aβ), which is involved in the processes of neurodegeneration in AD, is a substrate of this system, however its effect on UPS activity is still poorly explored. Here we found that Aβ peptides inhibited the proteolytic activity of the antiapoptotic Arg/N-end rule pathway that is a part of UPS. We identified arginyltransferase Ate1 as a specific component of the Arg/N-end rule pathway targeted by Aβs. Aβ bearing the familial English H6R mutation, known to cause early-onset AD, had an even greater inhibitory effect on protein degradation through the Arg/N-end rule pathway than intact Aβ. This effect was associated with a significant decrease in Ate1-1 and Ate1-3 catalytic activity. We also found that the loss of Ate1 in neuroblastoma Neuro-2a cells eliminated the apoptosis-inducing effects of Aβ peptides. Together, our results show that the apoptotic effect of Aβ peptides is linked to their impairment of Ate1 catalytic activity leading to suppression of the Arg/N-end rule pathway proteolytic activity and ultimately cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738421PMC
http://dx.doi.org/10.18632/aging.102177DOI Listing

Publication Analysis

Top Keywords

arg/n-end rule
20
rule pathway
20
proteolytic activity
12
aβ peptides
12
pathway proteolytic
8
catalytic activity
8
activity
6
6
arg/n-end
5
rule
5

Similar Publications

[Progress on the role of N-end rule pathways in protein degradation].

Sheng Li Xue Bao

December 2024

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China.

The N-end rule pathway is a protein degradation pathway mediated by the ubiquitin-proteasome system, which specifically targets and degrades target proteins by recognizing specific residues at the N-terminus of the proteins. The residues which play a crucial role in the N-end rule pathway are called degrons, also known as N-degrons, as they are usually unstable at the N-terminal end of the protein. Currently, several N-end rule pathways have been identified in the eukaryotes, including the Arg/N-end rule, Ac/N-end rule, and Pro/N-end rule pathways, as well as the recently discovered Gly/N-end rule pathway.

View Article and Find Full Text PDF

Among the most salient features that underpin the development of aging-related neurodegenerative disorders are the accumulation of protein aggregates and the decrease in cellular degradation capacity. Mammalian cells have evolved sophisticated quality control mechanisms to repair or eliminate the otherwise abnormal or misfolded proteins. Chaperones identify unstable or abnormal conformations in proteins and often help them regain their correct conformation.

View Article and Find Full Text PDF

Mechanistic understanding of hypoxia-responsive signaling pathways provides important insights into oxygen- and metabolism-dependent cellular phenotypes in diseases. Using SILAC-based quantitative proteomics, we provided a quantitative map identifying over 6300 protein groups in response to hypoxia in prostate cancer cells and identified both canonical and novel cellular networks dynamically regulated under hypoxia. Particularly, we identified SDE2, a DNA stress response modulator, that was significantly downregulated by hypoxia, independent of HIF (hypoxia-inducible factor) transcriptional activity.

View Article and Find Full Text PDF

N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.

Curr Genet

August 2020

Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt.

Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by a gradual loss of a specific group of dopaminergic neurons in the substantia nigra. Importantly, current treatments only address the symptoms of PD, yet not the underlying molecular causes. Concomitantly, the function of genes that cause inherited forms of PD point to mitochondrial dysfunction as a major contributor in the etiology of PD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is accompanied by the dysfunction of intracellular protein homeostasis systems, in particular the ubiquitin-proteasome system (UPS). Beta-amyloid peptide (Aβ), which is involved in the processes of neurodegeneration in AD, is a substrate of this system, however its effect on UPS activity is still poorly explored. Here we found that Aβ peptides inhibited the proteolytic activity of the antiapoptotic Arg/N-end rule pathway that is a part of UPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!