In this article, novel epoxy resin-based hierarchical porous polymers (HPSs) have been prepared through a non-sol-gel and template-free approach using crystalline trimethylolpropane (TMP) as porogen. The polymers exhibit dimensional stability and possess 3-dimentional interconnected multi-scale pores. In range of 50 μm~10 nm are ultra-macro-pore in between skeleton, macro-pore on skeleton and meso-pore in network, respectively. The porosity and specific surface area can be adjusted in range of 91.2-82.5% and 225-156 m/g, respectively. Using three kinds of hierarchical porous polymers as supports phospholipase D (PLD) was effectively immobilized through physical adsorption. Owing to high porosity of the support and improvement of mass transfer the loading amount of PLD reached as high as 223 mg/g and the corresponding specific activity achieved up to 3.75 × 10 U/g. Under optimized conditions and the phosphatidylserine (PS) yield reached 95.5% within 40 min at 45 °C. The immobilized PLD exhibited not only better storage stability and but also resistance to pH and thermal inactivation than free PLD. It was found that 73.5% of PS yield retained after 12 cycling reuses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.08.192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!