Self-association of type I collagen directed by thymoquinone through alteration of molecular forces.

Int J Biol Macromol

Inorganic and Physical Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India. Electronic address:

Published: November 2019

Type I collagen is a vital structural component of the extracellular matrix providing the connective tissues with biomechanical support. One of the interesting properties of collagen is to self-associate into fibrils. The present work aims to direct the self-assembly of collagen through different molecular forces, which are tuned on the addition of thymoquinone a well-known phytochemical. A change in relative viscosity and stress of collagen-thymoquinone blends influenced the interfibrillar aggregates around its hydration shell. Further, secondary structural integrity was studied via cotton curve effect, and vibrational frequency shifts showed a characteristic interaction of thymoquinone at the N-terminal residues of the triple helix. Finally, the spontaneous self-association of fibrils was tracked by calculating the rate of fibril growth kinetics, which potentially decreased with increase in thymoquinone concentration. The fibrils were eventually visualized under the high resolution-scanning microscope showing morphological variations. Therefore, such a protein-phytochemical interaction may tend to play with the hydration network of collagen and covalently interact with its imino acid residues. It may be speculated that such an inhibitory process portrayed by thymoquinone may have a fortune in the targeted and sustainable delivery to the site of action for certain diseases, which includes collagen accumulation. Moreover, its directed assembly could be utilized for designing templates as in manipulating the collagen as a nanoporous membrane to make nanofibers and further tuned by small molecules for nanoparticle synthesis application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.08.190DOI Listing

Publication Analysis

Top Keywords

type collagen
8
molecular forces
8
collagen
7
thymoquinone
5
self-association type
4
collagen directed
4
directed thymoquinone
4
thymoquinone alteration
4
alteration molecular
4
forces type
4

Similar Publications

Background: Currently, the pathophysiology of new bone formation in radiographic axial spondyloarthritis (r-axSpA) remains unclear. Cellular elements and their secreted bone turnover markers might be one of the underlying mechanisms that drive the new bone formation. Our study aimed to investigate the role of bone turnover markers in r-axSpA patients with fatty lesions.

View Article and Find Full Text PDF

Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates.

View Article and Find Full Text PDF

Association between ESR1 and COL1A1 gene polymorphisms and skeletal fluorosis in Tibetan, Kazakh, Mongolian and Russian populations, China.

Environ Pollut

January 2025

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University); Joint Key Laboratory of Endemic Diseases(Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University); Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China. Electronic address:

Background: Skeletal fluorosis is a chronic metabolic bone disease caused by excessive accumulation of fluoride in the bones. Previous studies have found that when the intake of tea fluoride is similar, the prevalence of skeletal fluorosis varies greatly among different ethnic groups, which may be related to different genetic backgrounds. Single nucleotide polymorphisms (SNPs) of estrogen receptor 1 (ESR1) and collagen type 1 α1 (COL1A1) were strongly associated with bone metabolism as well as bone growth and development, but their association with the risk of skeletal fluorosis has not been reported.

View Article and Find Full Text PDF

Leveraging the nanotopography of filamentous fungal chitin-glucan nano/microfibrous spheres (FNS) coated with collagen (type I) for scaffolded fibroblast spheroids in regenerative medicine.

Tissue Cell

January 2025

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:

Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.

View Article and Find Full Text PDF

The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!