The Amino acid Derivative Reactivity Assay (ADRA) was developed by the authors as an in chemico alternative to animal testing for skin sensitization potential. Although ADRA is based on the same scientific principles as the Direct Peptide Reactivity Assay (DPRA), a comparison of the results from these two test methods shows a far lower incidence of precipitation of test chemicals in reaction solutions for ADRA than for DPRA. Specifically, a comparison of the results for 82 test chemicals that were tested using both DPRA and ADRA showed that while there were 30 chemicals tested using DPRA for which precipitation was found in the reaction solution, there were just three chemicals tested using ADRA for which even slight turbidity was found in the reaction solution. In contrast to the fact that many DPRA test chemicals with a n-Octanol/Water Partition Coefficient (LogKow) of 2.0 or higher exhibited precipitation, there were only three ADRA test chemicals that exhibited turbidity, and these were all highly hydrophobic with a LogKow of greater than 6.0. Moreover, one of the DPRA test chemicals that exhibited precipitation also gave a false negative result, suggesting that anytime a test chemical exhibits precipitation in the reaction solution during DPRA testing the results must be interpreted with the greatest care, although all false positives are not caused by precipitation of test chemicals. Therefore, since relatively few ADRA test chemicals exhibited precipitation relative to DPRA, we consider ADRA to be an extremely useful means of testing a wide variety of chemical substances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vascn.2019.106624 | DOI Listing |
Genes Environ
January 2025
Department of Pharmaceutical Engineering, Faculty of Engineering, Sanyo-Onoda City University, 1-1-1, Daigaku-dori, Sanyo-Onoda City, 756-0884, Yamaguchi, Japan.
The number of alternatives to animal tests (non-animal test methods) for human health developed globally account for more than 40% of the test methods in the Organisation for Economic Co-operation and Development (OECD) Guidelines for the Testing of Chemicals (TGs). Within the TGs, the National Institute of Health Sciences (NIHS) has standardized 16 OECD TGs for human health, implemented four major revisions, and developed one test method for the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S10 guidelines on photosafety. This review describes trends in the OECD and Japan that mainly focus on international standardizations of non-animal test methods for human health.
View Article and Find Full Text PDFNat Mater
January 2025
School of Chemistry, Beihang University, Beijing, China.
The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.
View Article and Find Full Text PDFSci Rep
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, People's Republic of China.
Aiming at the problem that it is difficult to realize low-cost, high-performance and large-scale utilization of cementitious materials prepared from bulk solid wastes, this paper constructs a set of composite cementitious system based on alkaline activation of slag and fly ash (FA) by calcium carbide slag (CCS) and synergistic activation of sodium sulfate (NaSO) as a chemical dopant. The influence of factors such as solid waste type, mixing ratio, and NaSO content on the mechanical properties of composite cementitious systems was investigated by assessing compressive strength and analyzing microstructure using XRD, SEM-EDS, and FTIR. The test results indicate that CCS and NaSO exert significant influences on the strength of the composite cementitious system.
View Article and Find Full Text PDFNat Biomed Eng
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
The utility of urinary tests for the monitoring of the treatment efficacy and adverse events of anticancer therapies is constrained by the low concentration of relevant urinary biomarkers. Here we report, using mice with lung cancer and treated with chemotherapy, of a urinary fluorescence test for the concurrent monitoring of the levels of a tumour biomarker (cathepsin B) and of a biomarker of chemotherapy-induced kidney injury (N-acetyl-β-D-glucosaminidase). The test involves two intratracheally administered urinary reporters leveraging caged bioorthogonal click handles for the biomarker-dependent activation of 'clickability' and renal clearance, and the bioorthogonal click reaction of each renally cleared reporter with paired fluorescence indicators in the collected urine.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China.
The influence of interface morphology is of great importance on the shear behavior of the cement mortar-coal composite structure (CCCS) widely distributed in underground mines. In the present research, both the macroscopic- and microscopic failure characteristics of the CCCS with variable interface sawtooth angles (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!