AI Article Synopsis

  • Scientists studied how the size of tiny bubbles called liposomes affects their behavior in lab tests (in vitro) and in living things (in vivo).
  • They found that using a new technique called microfluidics made it easier to create liposomes of different sizes that were all the same and worked better than older methods.
  • Their research showed that small and big liposomes can enter certain cells similarly, but their sizes change how many liposomes get taken in and where they go in the body, especially in mice.

Article Abstract

Extensive research has been undertaken to investigate the effect of liposome size in vitro and in vivo. However, it is often difficult to generate liposomes in different size ranges that offer similar low polydispersity and lamellarity. Conventional methods used in the preparation of liposomes, such as lipid film hydration or reverse phase evaporation, generally give rise to liposomal suspensions displaying broad, multimodal size distribution combined with uncontrolled degree of lamellarity. In contrast, microfluidics allows highly homogeneous liposome dispersions to be produced and adjustment of microfluidic operating parameters (flow rate ratio (FRR) and total flow rate (TFR)) can offer size-tuning of liposomes (up to 300 nm, depending on the formulation). Herein, we demonstrate a novel method which allows the production of highly monodisperse, cationic liposomes over a wide particle size range (up to 750 nm in size). This is achieved through controlling the concentration of the aqueous buffer during production. Using this method, liposomes composed of 1,2-dioleoyl-sn-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium (DDA) - DOPE:DOTAP and DOPE:DDA liposomes - of up to 750 nm were prepared and investigated. These investigations demonstrate that the in vitro cellular uptake of small (40 nm) and large (>500 nm) liposomes in bone marrow-derived macrophages (BMDM) is similar terms of percentage of liposome cells and mean fluorescence intensity (MFI). However, significant differences are observed in BMDM uptake when represented in terms of number of liposomes, liposome surface area or liposome internal volume. In vivo biodistribution studies in mice show that by creating small (<50 nm) liposomes we can modify the clearance rates of these liposomes from the injection site and increase accumulation to the draining lymphatics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2019.08.013DOI Listing

Publication Analysis

Top Keywords

liposomes
9
cationic liposomes
8
cellular uptake
8
flow rate
8
liposome
5
size
5
novel microfluidic-based
4
microfluidic-based approach
4
approach formulate
4
formulate size-tuneable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!