Synthetic gene as target to assess the sensitivity of PCR to detect Trichinella spp. larvae in meat from a non-endemic region.

Trop Anim Health Prod

Faculdade de Agronomia e Medicina Veterinária (FAMV), Laboratório de Microbiologia e Imunologia Avançada - Programa de Mestrado em Bioexperimentação, Universidade de Passo Fundo (UPF), Campus I, Bairro São José, BR 285, km 292, Passo Fundo, RS, CEP 99052-900, Brazil.

Published: March 2020

Trichinellosis is a zoonotic disease exotic in Brazil but commonly found worldwide including South American countries like Argentina. International trading of swine meat needs an official Trichinella-free diagnosis commonly carried out by pepsin-HCl digestion of diaphragm tissue fragments followed by microscopic examination for the presence or absence of Trichinella larvae. The easiness of this diagnostic method allows it to be performed at slaughtering plants but, in contrast, it lacks sensitivity and does not allow species differentiation, which is fundamental for determining geographical and species distribution of different genotypes. In our study, we aimed to evaluate a highly sensitive diagnostic method based on the polymerase chain reaction (PCR) that would allow us to detect and classify different species of Trichinella. Thus, we designed a synthetic gene and selected five sets of primers targeting specific regions of the Trichinella genome. The synthetic gene was cloned into a plasmid and then used to optimize PCR conditions. Using our PCR, we were able to detect 0.001 pg of the synthetic gene, which corresponded to 0.01 larvae. Then, we collected 175 samples of Suidae (domestic and wild boars) diaphragm fragments that were pooled into groups, digested with pepsin-HCl, and had the DNA extracted for analysis by PCR. The clinical samples evaluated were negative by PCR. Our results indicate that the PCR-based method might be a useful diagnostic method complementary to the pepsin-HCl digestion method currently in use, mostly in non-endemic areas.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11250-019-02049-zDOI Listing

Publication Analysis

Top Keywords

synthetic gene
16
diagnostic method
12
pcr detect
8
pepsin-hcl digestion
8
pcr
6
method
5
synthetic
4
gene target
4
target assess
4
assess sensitivity
4

Similar Publications

Design of pH-responsive and amphiphilic pullulan-based biological macromolecule for gene delivery.

Int J Biol Macromol

January 2025

Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:

Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.

View Article and Find Full Text PDF

Clarification of the biosynthetic gene cluster involved in the antifungal prodrug echinocandin B and its robust production in engineered Aspergillus pachycristatus.

Microbiol Res

January 2025

Department of Clinical Laboratory, Nanjing Drum Tower Hospital, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China. Electronic address:

Echinocandin antifungals exhibit high efficacy against drug-resistant strains due to their unique mechanism of action. The production of their semi-synthetic precursors relies solely on microbial metabolism, leading to elevated production costs. Anidulafungin, an excellent echinocandin drug, is derived from echinocandin B (ECB), which is industrially produced by Aspergillus pachycristatus.

View Article and Find Full Text PDF

Many cellular patterns exhibit a reaction-diffusion component, suggesting that Turing instability may contribute to pattern formation. However, biological gene-regulatory pathways are more complex than simple Turing activator-inhibitor models and generally do not require fine-tuning of parameters as dictated by the Turing conditions. To address these issues, we employ random matrix theory to analyze the Jacobian matrices of larger networks with robust statistical properties.

View Article and Find Full Text PDF

Construction and Characterization of a Mutant Library for the P Constitutive Promoter in Lactic Acid Bacteria.

J Biotechnol

January 2025

Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:

Promoters are crucial elements for controlling gene expression in cells, yet lactic acid bacteria (LAB) often lack a diverse set of available constitutive promoters with quantitative characterization. To enrich the LAB promoter library, this study focused on the known strong constitutive promoter P in LAB. Through error-prone PCR and dNTP analog-induced random mutagenesis, a library of 247 mutants of P was generated by using the red fluorescent protein (RFP) fluorescence intensity as a high-throughput screening indicator in Streptococcus thermophilus.

View Article and Find Full Text PDF

EXO: A Dual-Mechanism Stimulator of Interferon Genes Activator for Cancer Immunotherapy.

ACS Nano

January 2025

Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

As natural agonists of the stimulator of interferon genes (STING) protein, cyclic dinucleotides (CDNs) can activate the STING pathway, leading to the expression of type I interferons and various cytokines. Efficient activation of the STING pathway in antigen-presenting cells (APCs) and tumor cells is crucial for antitumor immune response. Tumor-derived exosomes can be effectively internalized by APCs and tumor cells and have excellent potential to deliver CDNs to the cytoplasm of APCs and tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!